Promoting high standards of patient care by recognizing qualified individuals in diagnostic medical imaging, interventional procedures, and radiation therapy.
ARRT is the largest credentialing agency for radiologic technologists. More than 300,000 individuals hold registration in ARRT’s 15 certification categories.

Radiography, nuclear medicine technology, radiation therapy, sonography, and magnetic resonance imaging are the primary categories. Post-primary categories include cardiovascular-interventional technology, mammography, computed tomography, magnetic resonance imaging, quality management (new certifications discontinued after June 30, 2018), sonography, bone densitometry, vascular sonography, cardiac-interventional radiography, vascular-interventional radiography, and breast sonography. Physician extender — registered radiologist assistant.

Built on three pillars of certification — education, ethics, and examination — ARRT’s credential is unsurpassed in quality as well as quantity. Indeed, credentials from The American Registry of Radiologic Technologists are referred to as the gold standard across the profession.

Educational requirements cover the clinical and didactic approaches, and they continue throughout a Registered Technologist’s career. Ethics standards further help to distinguish R.T.s and protect patients. Examination is the third pillar that rounds out this equation for excellence. And ARRT develops and offers a state-of-the-art testing program that is second to none.

How do we do it? By applying the most sophisticated psychometric concepts to the development of exam questions, called “items” in the testing arena. Ph.D.-level psychometricians on the ARRT staff work with consultants throughout the profession to create tests that truly measure the knowledge and skills required on the job. ARRT exam content is rooted in comprehensive practice analyses that hold candidates up to real-world levels of expertise.

ARRT’s attention to detail is perhaps best exemplified by its item-development process. Test items are designed into proven formats that measure critical thinking and clinical problem-solving skills.

A certification exam is the pinnacle of a learning experience that begins much earlier and continues far beyond the actual test. Today’s R.T.s were once challenged by tests offered in their educational programs. Continuing education programs measure their knowledge at every step along the way.

That’s why ARRT is sharing its psychometric expertise with you. As a team — from preparatory education programs to CE providers — we can help to ensure high standards of patient care.
## Table of Contents

I. Introduction  
   Overview .................................................................................................................. 4  
   The Purpose of Assessment .................................................................................. 5  
   ARRT Exam Content, Length ............................................................................... 6  
   Why Multiple-Choice Format? ............................................................................... 8

II. Multiple-Choice Questions  
   Anatomy of an Item ............................................................................................... 10  
   ARRT Item Formats ............................................................................................... 11  
   *Direct Question, Incomplete Statement, Exhibits, Multi-Select Items,  
     Sorted-List Items, Negatively Worded Items, Essay*  
   Chapter Summary ................................................................................................. 20

III. Guidelines for Item Development  
   General Guidelines ............................................................................................... 24  
   Writing the Stem ................................................................................................. 25  
   Writing the Options ............................................................................................. 28  
   Chapter Summary, Item Review Checklist .......................................................... 33

IV. Strategies for Item Production  
   Five-Step Process ................................................................................................. 35  
   Putting It All Together .......................................................................................... 42  
   Chapter Summary ................................................................................................. 45

V. Critical Thinking and Clinical Problem-Solving Skills  
   Levels of Cognitive Complexity .......................................................................... 47  
   Two Important Caveats .......................................................................................... 47  
   The Socratic Dialogue ........................................................................................... 48  
   *Asking 'Why?'...Asking 'What If?'...Asking 'How?'*  
   Assessing Clinical Skills ....................................................................................... 51  
   Chapter Summary ................................................................................................. 56

Appendices  
A. Formats Not Used by ARRT .............................................................................. 57  
   *True-False, Multiple True-False, Matching, Fill-in-the-Blank,  
     Other Formats*  
B. Item Review and Critique .................................................................................... 60  
C. Style Sheet ........................................................................................................... 66  
D. The Joint Commission (Do Not Use List) ........................................................... 77  
E. Bibliography ......................................................................................................... 79
I. Introduction

Some might wonder: “What’s the big deal about writing multiple-choice questions, anyway?” Just by having picked up this manual, you’ve demonstrated awareness that there are probably several big deals. By reading it, you will learn what they are and how to manage them.
Overview

This book presents guidelines for developing test items for ARRT examinations. While its primary audience is individuals who write questions for ARRT exams, the information may be useful to anyone who writes test questions. Chapters II and III cover the essentials of item writing: question format, editorial conventions, and stylistic considerations. Chapters IV and V focus on strategies for producing test items. You’ll learn how to identify topics…and then convert your knowledge of those topics into test items.

We believe that the best way to learn is by example. So this guidebook is peppered with sample test questions and other exhibits. Most examples are drawn from the field of radiography, but you’ll also find occasional examples from other areas of radiologic technology and medical imaging.
The Purpose of Assessment

Testing has many purposes: At the level of the individual student, it is used for evaluating student progress toward achieving educational goals, identifying areas that require remedial activity, assigning grades, and identifying scholarship recipients. At the institutional level, testing is a tool for program evaluation and identifying strong or weak areas of curriculum. At the state or national level, tests are often used to certify competence or to license individuals for practice in an occupation or profession.

ARRT exams fall into this last category.

The purpose of ARRT certification exams is to:

Assess the knowledge and skills underlying the intelligent performance of the tasks typically required by professional practice in the modality.

Let’s look closer at three key phrases:

• **Assess the knowledge and skills**
  
  Written exams are great for evaluating cognitive skills, but they don’t tell us much about the clinical skills that a person performs in the work setting — positioning a patient, for example. What written exams can evaluate is knowledge related to positioning: what the position is called, what it’s used for, what it looks like, and so on. If you see this as a limitation of written exams, you’re right! In fact, this very limitation is one of the reasons behind ARRT’s clinical competency and experience requirements.

• **Underlying the intelligent performance**
  
  Some test items require candidates simply to recognize facts and basic concepts. But others go deeper — requiring students to understand why certain things are done, how to apply principles to clinical practice, and how to adapt to unusual circumstances. Only the most carefully crafted items can get at these types of critical thinking skills.

• **Of the tasks typically required**
  
  ARRT exams are related to practice. They have to be…by law. If an activity or procedure isn’t required in practice, then the related knowledge shouldn’t be covered on the exam. This is why many of the topics covered in common textbooks aren’t addressed by ARRT exams.
ARRT Exam Content, Length

Each ARRT certification exam is built on a task inventory and detailed topic outline. The task inventory is determined by surveying a national sample of practitioners to determine what constitutes typical practice. The topic outline (also known as “content specifications”) identifies the knowledge required to perform the tasks and serves as a blueprint for developing the exam. Although ARRT exams and educational curricula cover many of the same subjects, certification exams are more focused on actual practice; so they don’t cover everything that an educational program does.

---

**TASK INVENTORY FOR RADIOGRAPHY**

ARRT® Board Approved: January 2013
Implementation Date: January 2014

<table>
<thead>
<tr>
<th>Activity</th>
<th>Content Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Evaluate patient’s ability to understand and comply with requirements for the requested examination.</td>
<td>E.2.</td>
</tr>
<tr>
<td>4. Explain and confirm patient’s preparation (e.g., diet restrictions, preparatory medications) prior to imaging examinations.</td>
<td>E.2.C, E.7.C.2.</td>
</tr>
<tr>
<td>5. Examine imaging examination requisition to verify accuracy and completeness of information (e.g., patient history, clinical diagnosis, physician’s orders).</td>
<td>E.1.B.</td>
</tr>
</tbody>
</table>

---

**CONTENT SPECIFICATIONS FOR THE RADIOGRAPHY EXAMINATION**

ARRT® Board Approved: January 2013
Implementation Date: January 2014

---

A. RADIATION PROTECTION (45)

1. Biological Aspects of Radiation (10)
   A. Radiosensitivity
      1. dose-response relationships
      2. relative tissue radiosensitivities (e.g., LET, RBE)
      3. cell survival and recovery (LD50)
      4. oxygen effect
   B. Somatic Effects
      1. short-term versus long-term effects
      2. acute versus chronic effects

2. Minimizing Patient Exposure (16)
   A. Exposure Factors
      1. kVp
      2. mAs
   B. Shielding
      1. rationale for use
      2. types
      3. placement
   C. Beam Restriction
The number of questions on ARRT exams varies considerably by area of practice. Most well constructed exams are developed according to the “domain sampling model.” No single exam covers all topics in a field; rather, they represent a sample of those topics. Studies have shown that a candidate taking a test with 150 to 200 questions gets a score almost identical to what he or she would obtain on a more exhaustive test of 300 questions. (Crocker & Algina 1986, Ch. 7)

ARRT’s post-primary exams typically have fewer items than primary exams because candidates have already demonstrated much of their knowledge. For example, the Mammography exam doesn’t cover topics such as radiation protection and basic patient care, because they were already covered on the prerequisite Radiography exam. Some exams are shorter than others because scopes of practice are much more focused. Exams in areas such as bone densitometry require fewer items than exams in MRI or Vascular-Interventional Radiography.

There are content categories outlined for every ARRT examination. The content areas are derived from the task lists. A panel of subject matter experts determines the knowledge required to perform a task on the task list. Then, once the content has been determined, that same panel determines the number of items in each content area.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Content Categories</th>
</tr>
</thead>
</table>

E. PATIENT CARE AND EDUCATION (26)

2. Interpersonal Communication (3)
Why Multiple-Choice Format?

ARRT exams use multiple-choice questions (MCQs). These are also known as selected-response items, because candidates choose an answer from several that are provided. Essay, short-answer, and practical exams, on the other hand, are referred to as constructed-response tests. Candidates must actually create the answer.

MCQs have had their share of controversy in recent years. Granted, they have their limitations. But they're outweighed by some important benefits (see table).

Some of these limitations are just a fact of life, and MCQs aren't always the best assessment option. For example, since we know we can't assess practical skills with MCQs, the ARRT relies on clinical instructors or program directors who observe students in the practice setting.

But most of the limitations to MCQs can be addressed. It's possible to write items that assess in-depth knowledge. It's possible to have technically accurate items that are clearly written at the appropriate reading level. And it's possible to write test items without conveying extraneous clues that benefit testwise candidates.

That's the purpose of this guidebook: to help item writers capitalize on the benefits of MCQs, while minimizing the limitations.

### Multiple-Choice Questions (MCQs): Pros and Cons

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allow for broad content coverage: Many items can be presented and answered in a short period of time</td>
<td>Test for recognition instead of recall or the ability to arrive at answer without cues</td>
</tr>
<tr>
<td>Best for knowledge and cognitive skills</td>
<td>Can't assess practical (clinical) or interpersonal skills</td>
</tr>
<tr>
<td>Easy to administer to large groups</td>
<td>Encourage MCQ study habits like rote memorization</td>
</tr>
<tr>
<td>Can compute statistics to help evaluate item quality</td>
<td>Scores can be contaminated by “testwiseness” and general reading skills</td>
</tr>
<tr>
<td>Objective scoring: Scores are very reliable</td>
<td></td>
</tr>
</tbody>
</table>
II. Multiple-Choice Questions

Multiple-choice questions (MCQs) come in all sizes and shapes. Most have four choices while others have three. Some end in a colon, others end with a question mark.

Indeed, there are many choices to make when writing MCQs. This chapter presents formats that have worked well over the years in a variety of subjects. We start by covering some terminology — just to be sure we’re all using the same jargon. Then we describe several MCQ formats.
Anatomy of an Item

MCQs consist of three parts:

- the stem, which presents a problem situation, and
- the key, or the correct answer, and
- the distractors, which are possible answers, but clearly incorrect. Most item writers find writing plausible distractors to be the most difficult part of writing items.

Sometimes you may hear someone refer to an item’s options. In that case they will be referring to any of the available answers.

Some item formats aren’t appropriate for ARRT’s certification exams:

Acceptable Formats:
- Direct question
- Incomplete statement
- Exhibits (radiographs, tables, illustrations, graphs, videos, etc.)
- Sorted-list
- Multi-select

Registered Radiologist Assistant Only:
- Short-answer and essay

Very Rarely Accepted:
- Negatively worded direct question

ARRT Does NOT Accept*:
- True-false
- Multiple true-false
- Matching
- Fill-in-the-blank
- None of the above
- All of the above

*For examples of the item types please go to Appendix A.
ARRT Item Formats

Two basic MCQ formats comprise the majority of test items on ARRT’s certification examinations: direct question and incomplete statement. Adding tables, graphics, and other material can enhance both, as described later.

Direct Question

In the example below, the stem poses a single, complete problem, while each option provides a possible solution or answer. Item writers prefer this format for its ability to present a clearly formulated problem.

Which of the following refers to the degree of blackening seen on a radiograph?
A. radiographic intensity
B. radiographic contrast
C. radiographic sharpness
D. radiographic density

(* Asterisks in examples indicate correct answers)

MCQs typically consist of three, four, or five choices, or options. The more choices candidates have, the less likely they can just guess the correct answer. It’s often difficult, though, to create five plausible choices; and adding obvious wrong answers doesn’t increase an item’s quality or difficulty. In fact, some experts recommend just three options. For our purposes, we will concentrate on MCQs with four options.

Incomplete Statement

The preceding example can also be written as an incomplete statement, a format that often results in fewer words. In this case, the word radiographic was deleted from each option and placed into the stem.

The degree of blackening seen on a radiograph is referred to as radiographic:
A. intensity
B. contrast
C. sharpness
D. density

(* Asterisks in examples indicate correct answers)
The key to writing a good incomplete statement is to have the stem relate a complete problem. It might be tempting to break a statement by inserting a colon (:) into the middle of it, and then to call it a stem. But you can end up with an item that’s flawed, like the example below.

**FLAWED ITEM: UNFOCUSED STEM**

The degree of blackening seen on a radiograph:

A. must be controlled by the kVp setting  
B. is called contrast  
C. is frequently caused by scattered radiation  
D. is referred to as radiographic density

This example of an “unfocused stem” demonstrates the most common problem in item writing: not only does the stem fail to present a single problem, it also — because it lacks focus — encourages heterogeneous options, which tend to wander all over the place. Worse yet, a stem that doesn’t present a well-defined problem makes it easier to end up with two correct answers (e.g., option C is partially correct because scatter can increase density).

A good way to tell if a stem is unfocused is to mask the options and ask whether a knowledgeable candidate could determine the answer by reading just the stem. If it’s necessary to read all of the options to figure out what the stem is really asking, then the stem doesn’t have ample information.

An even better way to focus a stem is to first write it as a direct question, and then convert it to an incomplete statement — but only if there’s good reason to do so, such as making the item easier to read. In general, if it’s not possible to phrase a stem as a question, then the item is probably flawed.

Note that the previous examples contain only one correct answer, and the distractors are clearly incorrect. Not so with a variation of the direct question and incomplete statement formats called “best answer.” It offers alternatives that may be partially correct, with one being clearly more correct than the others. The best-answer format is used to gauge complex achievement, such as asking a candidate to select the best reason for an action, the best method for doing something, or the best application of a principle. For example, an item on managing a skin reaction to radiation therapy might list several correct ways to treat erythema, but one of the methods may be better than the others. Best-answer items usually require judgment and often involve opinions; they should be used when it is important to know the best course of action.
Exhibits

The incomplete statement and direct question formats serve as building blocks for items that display information in exhibits such as tables, graphs, text paragraphs, drawings, medical images, photographs, and videos. Exhibits can present information in a way that’s practical, clinically relevant, and concise (“a picture says a thousand words”). They also provide an alternative way to assess critical thinking.

Given that radiologic science is mostly about medical imaging, it makes perfect sense to use radiographs, CT scans, sonograms, and other images for test items. On most ARRT exams, 10% or more of the test items present a medical image, illustration, or video clip. And once you’ve gone to the trouble of producing an image, illustration, or video clip it makes sense to write several items to go with it. The examples on the following page demonstrate the different types of items that can accompany an image or illustration.

The first two items cover basic anatomy. Although nearly identical, they ask the question in distinctly different ways. Which item is easier? We suspect the first one: it supplies more information by giving more anatomical labels — like providing more pieces of a puzzle.
The remaining examples show that drawings can go beyond simple identification of parts. The third example in the set addresses physiology, while the last two items require detailed knowledge of specific radiologic studies.

Keep in mind that most illustrations lend themselves to questions about both structure (e.g., anatomy) and function (e.g., physiology). For example, test items based on a diagram of an x-ray tube could require candidates to identify parts, state the materials they consist of, and explain how they work.

Arrow 4 in the illustration identifies the:

A. iliac crest*
B. ischium
C. greater trochanter
D. femoral head

The iliac crest is identified by arrow number:

A. 1
B. 2
C. 3
D. 4*

The rate of bone turnover is usually highest at which of the following regions?

A. 2
B. 3
C. 5
D. 7*

Which arrow identifies a site commonly used to measure bone mineral density?

A. 4
B. 5
C. 7*
D. 9

The modified Cleaves position (or bilateral frog leg) demonstrates what anatomical part?

A. 2
B. 6
C. 7*
D. 9

**TIP**

For a set of items related to the same exhibit, options should use *either* all words (like the first in the box below) *or* all numbers (remaining items). Mixing them up, as we did here, may result in items that “clue” one another.
Tables and graphs are another common type of exhibit. Even a list of words or paragraph of text might be considered an exhibit. The first example below highlights the advantages of using a table to organize information in the stem. Although this table provides numbers, tables can also be used to present text, such as a list. (An item in Chapter 5 presents a list outlining the steps of a QC procedure.) The second example below presents a table in the options. While not technically an exhibit, the table format does improve readability.

A bone densitometry scan of the lumbar spine produces the BMD measurements below. What might explain these results?

<table>
<thead>
<tr>
<th>region</th>
<th>g/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.98</td>
</tr>
<tr>
<td>L2</td>
<td>0.92</td>
</tr>
<tr>
<td>L3</td>
<td>0.96</td>
</tr>
<tr>
<td>L4</td>
<td>1.01</td>
</tr>
</tbody>
</table>

Which of the following sets of technical factors will produce a radiograph with the greatest density?

<table>
<thead>
<tr>
<th>mA</th>
<th>msec</th>
<th>SID</th>
<th>kVp</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>100</td>
<td>500</td>
<td>48”</td>
</tr>
<tr>
<td>B.</td>
<td>200</td>
<td>250</td>
<td>36”</td>
</tr>
<tr>
<td>C.</td>
<td>400</td>
<td>125</td>
<td>40”</td>
</tr>
<tr>
<td>D.</td>
<td>500</td>
<td>100</td>
<td>40”</td>
</tr>
</tbody>
</table>

A. osteoporosis  
B. scoliosis  
C. vertebral fracture at L1*  
D. severe facet sclerosis at L2

Exhibits — such as images, illustrations, tables, graphs, videos, and other types of information displays — can be used as the basis for numerous types of test items. The table below summarizes more examples.

<table>
<thead>
<tr>
<th>Type of Exhibit</th>
<th>Knowledge and Skill Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical images; anatomical illustrations; positioning photographs or diagrams</td>
<td>Recognize anatomy, physiology, or pathology; identify positions and projections; recognize positioning errors; identify artifacts; evaluate image quality; compensate for poor images.</td>
</tr>
<tr>
<td>Drawings or photographs of equipment and instrumentation</td>
<td>Recognize parts; explain how systems function; explain QC procedures; troubleshoot equipment; evaluate instrument settings.</td>
</tr>
</tbody>
</table>
**Type of Exhibit** | **Knowledge and Skill Assessed**
---|---
Drawings or models of scientific principles or processes (e.g., scattered radiation; dose-response curves) | Identify and label parts; infer relationships; determine words or equations that correspond to a model or curve.
Tables or graphs with technical factors; technique charts; equipment specifications; results of QC tests | Evaluate technical factors; calculate certain results; interpret and evaluate QC data; draw inferences; interpret data and use charts (e.g., bone mineral density readings; D log E curves).

**Multi-Select Items**

Standard multiple-choice items are best used to assess situations where there is one definitely correct answer, or there is one option that is clearly better than the alternatives presented. However, there are real life circumstances where there may be multiple correct options, or where there are two or more components that are used to effectively solve a problem. In situations such as this, where there is more than one correct or acceptable option, the *multi-select item* can be well used. This item format asks the candidate to select two or more of the options, and is scored as correct if all of the correct options are selected and none of the incorrect options are selected. The following illustrates the format of a multi-select item:

Which three of the following options are correct? (select three)

A. incorrect option  
B. correct option*
C. correct option*  
D. incorrect option  
E. correct option*  
F. incorrect option

The candidate would get this item correct if they selected options B, C, and E. If they did not select all of the correct options, or selected any of options A, D, or F, they would get the item incorrect.
The following is an example of a multi-select item:

Electrolyte levels can be measured from which two of the following?
(select two)
A. saliva
B. urine*
C. blood*
D. skin scraping
E. nasal secretions

The candidate would get this item correct if options B and C were selected; any other combination of responses would be an incorrect response.

As with standard multiple-choice items, all options in muti-select items should be either completely correct, or totally incorrect. These items are best written with two or more correct options and at least two, but preferably more, incorrect options.

The multi-select item format is similar to another format that sometimes appears on ARRT exams, the combined-response format. Where the multi-select format has two or more correct options and two or more incorrect options, the combined response format most typically consists of three responses and either two or all three are correct. Combined-response items are typically written in the format shown below:

Electrolyte levels can be measured from which of the following?
1. urine
2. blood
3. skin scraping
A. 1 & 2 only*
B. 1 & 3 only
C. 2 & 3 only
D. 1, 2, & 3
The combined-response format was a way to present items with multiple correct options when test items were limited to four options, but now that testing software is more sophisticated and we have the potential for including more options, it is thought that the multi-select format works better for these types of items. Combined-response items have the limitation that if you know that one of the responses is incorrect, you may be able to deduce the correct answer without knowing if the other responses are correct or not. For example, in the combined-response item shown on the previous page, if the candidate knows that skin scraping is an incorrect option, they then can assume that option A is correct even if they do not know if responses 1 or 2 are correct. In contrast, the multi-select format presents items with multiple correct and multiple incorrect options, and a decision is required as to whether or not each of the options is correct or incorrect. For these reasons ARRT prefers that new items with multiple correct options be written in the multi-select format.

Sorted-List Items

The sorted-list item is effectively used when the goal is to place options in logical order (e.g., from MOST to LEAST). The correct answer to a sorted-list item is a sequence that is in order from one extreme to the other. The sequence can represent distance (e.g., near to far), time (e.g., first to last), or some other ordered variable. The following is an example of a sorted-list item:

Place the parts from the unordered list on the left so that they appear in proper sequence in the column on the right, proceeding from proximal to distal. The correct answer consists of a column with the most proximal part appearing first on the list and the most distal part appearing last.

<table>
<thead>
<tr>
<th>Unordered Options</th>
<th>Ordered Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>elbow</td>
<td></td>
</tr>
<tr>
<td>shoulder</td>
<td></td>
</tr>
<tr>
<td>hand</td>
<td></td>
</tr>
<tr>
<td>wrist</td>
<td></td>
</tr>
</tbody>
</table>

The way these items work during the testing session is that the candidate is presented with the left-hand column of unordered options, and the right-hand column is initially blank. The candidate then uses the mouse to click on options in the left-hand column and drags them to the correctly ordered position in the right-hand column.
To correctly answer this example item the candidate would first use the mouse to click on ‘shoulder’ in the left-hand column, and drag it to the top position in the right-hand column. The candidate would then click on ‘elbow’ and drag it to the second position in the right-hand column. The same would then be done with the options ‘wrist’ and ‘hand’.

<table>
<thead>
<tr>
<th>Unordered Options</th>
<th>Ordered Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>elbow</td>
<td>shoulder</td>
</tr>
<tr>
<td>shoulder</td>
<td>elbow</td>
</tr>
<tr>
<td>hand</td>
<td>wrist</td>
</tr>
<tr>
<td>wrist</td>
<td>hand</td>
</tr>
</tbody>
</table>

The sorted-list item is best used when there is a list of four or more options that form a well-defined sequence.

**Negatively Worded Items**

You’ve seen test items that use *not*, *except*, or other negative wording in the stem. Sometimes it makes perfect sense to write test items that emphasize what should not be done — such as when certain drugs or procedures are contraindicated, or when some action must be avoided because it could be harmful. But negative wording can result in flawed items, so ARRT uses these items sparingly.

**Example of Negatively Worded Item**

All of the following will result in grid cut-off EXCEPT:

A. an off-center tube
B. a tube that is perpendicular to the lead strips
C. improper SID being used with a focused grid
D. grid motion being started before exposure is made

Which of the following will NOT result in grid cut-off?

A. an off-center tube
B. a tube that is perpendicular to the lead strips
C. improper SID being used with a focused grid
D. grid motion being started before exposure is made
A major limitation of these examples is that quick readers may miss the negative phrasing and choose an incorrect answer. To help prevent this type of oversight, always highlight the negative word in uppercase, (e.g., NOT). Another limitation is the tendency to end up with “double negatives.” In the example option C contains the negative “improper,” which makes the items difficult to understand clearly. The format is often so flawed that ARRT discourages their use.

Essay

The essay question, an extension of the short-answer format, is good at gauging the depth of a candidate’s knowledge about a particular topic. To encourage focused responses, essay questions must be clearly stated and provide ample direction to the candidate. After the Registered Radiologist Assistant exam administration, teams of experts review the candidate responses for each essay item and score the item according to specific criteria.

Chapter Summary

This chapter described several useful formats for assessing knowledge and skills in the radiologic sciences and other disciplines. The table on the following page lists each format and offers a summary judgment. The next chapter discusses style and editorial guidelines for those formats that ARRT endorses.
Review of Item Formats

<table>
<thead>
<tr>
<th>ARRT-ENDORSED ITEM TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Question</td>
<td>Preferred format</td>
</tr>
<tr>
<td>Incomplete Statement</td>
<td>Also acceptable</td>
</tr>
<tr>
<td>Exhibits (illustrations, medical images, tables, graphs, videos, etc.)</td>
<td>Very desirable</td>
</tr>
</tbody>
</table>

REGISTERED RADIOLOGIST ASSISTANT EXAM ONLY

| Short-Answer and Essay | Useful constructive response format — requires raters to score items |

RARELY ACCEPTED

| Negatively Worded | Rarely accepted |

NOT ENDORSED

| Multiple True-False | NOT used on ARRT exams |
| Matching            | NOT used on ARRT exams |
| Others (fill-in-the-blank, true-false; none of the above; all of the above) | Avoid these; flawed or; at least, susceptible |
III. Guidelines for Item Development

The previous chapter focused on MCQ formats. This chapter delves into another important aspect of item writing: style. Guidelines from this chapter will help you produce items that are consistent in both format and style. While we urge you to keep these guidelines in mind, we’re quick to point out that they are just that — guidelines, not rules. Some are stylistic choices made by ARRT staff; others represent recent philosophy in teaching and assessment. General adherence to these guidelines will result in well-written, useful items that won’t require extensive editing.
This chapter is divided into three major sections. First we cover some general guidelines for item writing. Then we get into the components: the stem (which presents the question or problem), and the options (distractors as well as the correct answer). The chapter summary pulls it all together into a handy checklist.

Before we start, a rule of thumb: MCQs usually present three, four, or five options. The more choices, the less likelihood of a guess being right. In theory, with five options there’s only one chance in five of guessing the correct answer; with four options it’s one chance in four. But it can be difficult to come up with five plausible choices. And neither item quality nor difficulty is discernibly increased by adding obviously wrong answers that no one would choose. In fact, studies show three or fours options per item to be optimal. For our purposes, we’ll concentrate on creating MCQs with four options.
General Guidelines

Here are seven standards for item writers:

1. **Test important knowledge and skills.** Design each item to measure an important learning outcome. Keep the focus on the content of the item; resist the temptation to include irrelevant, obscure, or insignificant material in an attempt to increase the item's difficulty. (Chapter 4 offers strategies for identifying specific topics.)

2. **Be up-to-date and correct.** Avoid referring to events in the immediate future; it all-too-soon becomes the past. Try to write items that are contemporary, but won’t appear dated in a year.

3. **Provide sufficient information.** The stem of an item must contain sufficient information to enable the candidate to select the appropriate answer. A candidate should be able to read the stem and — with the proper knowledge — state the answer without looking at the options.

4. **Cite “according to whom.”** If accepted authorities don’t agree on the best response, select and cite the appropriate one (e.g., “According to ACS guidelines...”). The NCRP recommendation on radiation protection may differ from the regulations in your state. Both are right, but you have to let the candidate know which one the test item is about. Because ARRT exams are national in scope, we almost always rely on national authorities rather than state or local ones.

5. **Make distractors plausible.** All distractors should be logically consistent with the stem. Any that are silly or obviously incorrect will not help ARRT assess the candidate’s knowledge.

6. **Avoid bias.** Items must avoid both the reality and appearance of bias, in terms of gender, culture, race, and other discriminatory factors.

7. **Offer only one correct answer.** It almost goes without saying: There can be one and only one correct, or clearly best, answer. (Of course, an exception to this would be when writing our multi-select items that state in the stem that the candidate must select two or more answers.)

**TIP**

State each item clearly and grammatically.

Write simply: no overly long, complex, confusing sentences.

Make any pronoun referents unmistakable.

Stay away from words, phrases, or constructions that make reading it unnecessarily difficult.

Avoid amateurish, inelegant, slang terminology and constructions.

Direct questions make better stems than incomplete sentences, and they help avoid other problems such as incomplete stems, non-parallel options, and convoluted wording.

When an incomplete sentence is unavoidable, be sure to complete it in the appropriate syntax.
Writing the Stem

1. **Set the task**

A stem must provide sufficient information for the candidate to be able to interpret the item’s intent and select the appropriate answer. Candidates shouldn’t have to read all the options to figure out what you’re asking for. Check the clarity and completeness of the stem by covering the options and determining whether the item could be answered without them.

2. **Make it clear**

Avoid ambiguous, confusing, or vague wording. The only reason to include superfluous material would be if you were testing whether candidates can identify relevant information. Test items are supposed to allow candidates to show what they have learned. If an item’s wording, vocabulary, or sentence structure is confusing and prevents candidates from understanding what they’re being asked, they won’t have that opportunity.

Examine the two items below:

According to the NCRP, the occupational dose-equivalent limit to a pregnant radiographer should NOT exceed how many rem during the gestation period?

A. 0.3 rem  
B. 0.5 rem  
C. 1.0 rem  
D. 5.0 rem

The primary purpose of the x-ray performance standards specified by Title 21 of the Code of Federal Regulations (part 1020) is to regulate:

A. maximum patient exposure to x rays  
B. the design and manufacture of x-ray systems  
C. radiologic terminology  
D. radiographer knowledge and skill requirements

These examples share one fundamental fault: They’re “fuzzy,” due to awkward sentence structure, confusing wording, or vague terms.

The first item’s unusual sentence construction plus use of the negative equals confusion. This item is testing relatively basic information, which can best be approached with a simple straightforward question: “According to the NCRP, what is the occupational dose-equivalent limit (in rem) for a pregnant radiographer?”
An ambiguous term in the second example is likely to cause candidates to stumble. What does the word “primary” mean? Couldn’t one make a case for each one being “primary” in some way? Words like “best,” “worst,” “most important,” and “greatest” must be clarified. Supply additional information that answers the question, “In terms of what?” The stem may be simplified by saying this, instead: “Part 1020, Title 21 of the Code of Federal Regulations addresses:”

3. Referencing documents

Nationally recognized authoritative documents are often listed as part of the content specifications. Some examples are NCRP for radiology and radiation therapy, MQSA for mammography, and HIPAA for many exams. If a document is listed in the content specifications, items may be written that ask about them. (See example below.)

What agency dictates how often a compression check must be done?
A. OSHA
B. NCRP
C. MQSA
D. ACR

If the document is in the stem, “according to…” usually works the best. Items written in this way should have the document listed in the content specifications. The document may also be listed in the options. The key should be a document that can be found in the content specifications.

4. Target appropriate level of reading difficulty

Item difficulty is dramatically influenced by vocabulary level — and our purpose is to test a candidate’s knowledge-level, not his or her vocabulary. Even a simple idea can be encased in vocabulary that very few candidates would understand. Notice that the third example is much clearer:

• The postulation of capillary effectuation promotes elucidation of how pliant substances ascend in incommodious veins.

• The thesis of capillary execution serves to illuminate how fluids are elevated in small tubes.
• The principle of capillary action helps explain how liquids rise in small passages.

Clearly, vocabulary level — as well as sentence structure — has a major influence on whether candidates will understand what’s being asked in a test question. Simple, declarative sentences work best.

5. **Keep it short, but not too…**

State the stem as precisely as possible and steer clear of unnecessarily complex wording and sentence structure. A stem should present a complete problem. Examine this item below:

**BAD:**

The navicular
A. is sometimes used as another name for the scaphoid*
B. can be located in a patient’s skull
C. is a small bone found in the knee
D. is a blood vessel

**BETTER:**

What is another name for the navicular?
A. triquetrum
B. semilunar
C. scaphoid*
D. cuneiform

The “bad” stem fails to clearly set a problem. What bit of knowledge is this item intending to assess? Before you write an item, you must first have a very clear idea of what knowledge you are trying to assess. A candidate would have no idea what question is being asked. Only after reading the stem with all of the options does its point become clear. Candidates should know as soon as possible exactly what is being asked. The “better” stem not only states the problem clearly, it also relates each option to the intent of the item.
Writing the Options

1. Make one answer the correct one

Multiple-choice items ask candidates to choose a single correct answer from the options provided. Presented with more than one plausible answer, the candidate faces a dilemma — deciding which is the proper answer. Candidates shouldn’t have to be mind-readers to figure out the intent of a question. That’s the item writer’s responsibility.

2. Don’t give unintended clues

Avoid sending signals that might help candidates select the correct answer or eliminate an incorrect alternative. Most extraneous clues in multiple-choice items are found in the wording. Two key sources are the “implausible option” and the “specific determiner.”

Look for the grammatical clues in the two examples below.

A lateral malleolus is associated with an:
A. knee  
B. shoulder  
C. ankle  
D. hip

An electrical transformer can be used:
A. storing electricity  
B. to increase the voltage of alternating current  
C. it converts electrical energy into mechanical energy  
D. alternating current is changed to direct current

In the first, the common mistake of using the article “a” or “an” at the end of the stem is an important indicator of the correct answer. If a candidate already knows that the correct answer to the item is either “ankle” or “hip,” the term “an” before the blank indicates that the next word must begin with a vowel, so the candidate will correctly guess “ankle.” Eliminate this problem by placing the article in the options. (See example below.)

A lateral malleolus is associated with:
A. a knee  
B. a shoulder  
C. an ankle  
D. a hip
In the second example above, only answer B grammatically fits the stem. Regardless of whether candidates know anything about electrical transformers, this clue will lead them to the answer. Be sure that all options match their stems in terms of logic and grammar.

Another common, but perhaps less obvious, mistake is presenting options that are inappropriate or implausible. Candidates can dismiss such distractors immediately and increase their chances of choosing the correct answer.

Which of the following best describes an electron?
A. a negative particle
B. a neutral particle
C. a positive particle
D. a voting machine

Answer D, while clever, is so obviously wrong that no candidate who reads the item carefully will select it. The more plausible choices a candidate has, the less likely that he or she can simply guess the correct answer. Item writers can usually think of two good distractors for a stem, but have difficulty coming up with a third. Avoid the temptation to use either “all of the above” or “none of the above.” Those options only confuse the candidate and add nothing to the value of the item…which leads to the next rule.

3. Avoid “all of the above” and “none of the above”

Using “all of the above” as an option lets a candidate answer an item on the basis of partial information. They can tell that “all of the above” is the correct choice simply by knowing that two of the options are correct. In turn, they can tell that it’s wrong by recognizing that at least one of the options is incorrect. Once a candidate has determined that “all of…” and “none of…” are not the correct choices, his or her chances of guessing correctly have doubled.

Using “none of the above” as a correct answer does nothing more than measure the ability to detect incorrect answers. The candidate doesn’t demonstrate knowledge of what’s correct. This alternative is used most often in computational problems where — if it is the correct answer — the candidate would still have to perform the computation in order to know.
Another clue too often found in the vocabulary of many items is the “specific determiner.” Using terms like “some,” “sometimes,” “often,” “may,” “always,” “never,” “all,” and “none” can tip off answers. It’s not so much that the correct answer is given away; rather, it’s that candidates — because they know that few things in life “always” or “never” happen — can eliminate distractors.

4. Make structure parallel

Options for any one item should all begin with the same part of speech and be approximately the same length. A correct answer that’s noticeably longer or shorter than the distractors draws immediate attention to itself. Longer options are frequently correct; it’s their additional detail that makes them correct. Avoid items with a correct answer that’s detailed and distractors that are fuzzy, vague, or incomplete.

5. Arrange in order

Present options in some logical order. For items that require a numerical response, present the choices in either ascending or descending order. Short verbal responses can be arranged in alphabetical order unless there’s a reason to present them in some other manner. Anatomical parts can also be arranged in order (e.g., anterior to posterior, proximal to distal, and so on).

<table>
<thead>
<tr>
<th>OUT OF ORDER:</th>
<th>RATHER:</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is 100 divided by 25?</td>
<td>What is 100 divided by 25?</td>
</tr>
<tr>
<td>A. 5</td>
<td>A. 2</td>
</tr>
<tr>
<td>B. 2</td>
<td>B. 4</td>
</tr>
<tr>
<td>C. 75</td>
<td>C. 5</td>
</tr>
<tr>
<td>D. 4</td>
<td>D. 75</td>
</tr>
</tbody>
</table>

Use an efficient and logical format. Listing options on separate lines, one under another, makes them easy to read and compare. Use letters to differentiate the choices, since numerical answers in numbered options could confuse candidates.
6. **Vary the correct answer's position**

Place correct answers randomly. And don’t feel like you have to use B or C every time. Correct answers should appear in each position roughly the same number of times, but their placement shouldn’t follow a discernible pattern. In a 25-item quiz, for example, option A should be used as the correct answer 5 to 7 times, option B 5 to 7 times, and so on.

7. **Be careful with opposites**

Why — in fields like biology, physics, and health care in general — does it seem natural to write items using distractors that are opposites? Because physical events have effects that can occur in one direction or another. For example, a question might ask what happens to contrast as kVp increases. Well, contrast will do one of two things: increase or decrease.

How do we deal with such items? Consider the example below:

What should be changed to increase the depth of penetration of an ultrasound beam?

A. decrease frequency*
B. increase frequency
C. increase the velocity
D. decrease the amplitude

Options A and B are related to each other as paired opposites. Meanwhile, options C and D are unrelated. A rule taught in test coaching school: If two of the options form a pair, one of them is likely the correct answer. In this case, the testwise student will immediately eliminate options C and D. Even if that candidate knows nothing, he or she suddenly has a 50% chance of getting it right by guessing.
Instead, write options for this type of item in one of the two ways shown below.

- Form two pairs of opposites, like this:
  - A. decrease frequency
  - B. increase frequency
  - C. increase velocity
  - D. decrease velocity

- Or, avoid opposites altogether, as shown here:
  - A. decrease frequency
  - B. increase intensity
  - C. increase velocity
  - D. decrease amplitude

This requires candidates to first recognize that frequency, not velocity, controls penetration. Next they have to know that depth of penetration is increased by decreasing the frequency.

Here’s one more example. Although the first set of options might be acceptable, some candidates will quickly rule out option B because it is different. (Meanwhile, others may choose option B because it is different.)

For a PA oblique projection of the optic foramen, the central ray should be directed:

- A. parallel to the interpupillary line
- B. perpendicular to the interpupillary line
- C. parallel to the acanthomeatal line
- D. parallel to the glabellomeatal line

The set of options below is better. They are parallel in structure (two pairs of opposites) and provide less clueing. Candidates must discern between two lines (interpupillary vs. acanthomeatal) and two planes (parallel vs. perpendicular).

- A. parallel to the interpupillary line
- B. perpendicular to the interpupillary line
- C. parallel to the acanthomeatal line
- D. perpendicular to the acanthomeatal line

8. Avoid cross-keying

Make sure that the content of one item doesn’t provide the answer to another. And avoid synonyms or paraphrases in options. Candidates who recognize them will realize that they are, in effect, the same answer but can’t both be the correct choice.
Chapter Summary

As stated at the beginning, these are only guidelines. Follow them when they’re logical; break or bend them if doing so will improve an item’s effectiveness. The following checklist may be helpful for evaluating MCQs written by you or others.

Item Review Checklist

• What bit of knowledge are you trying to assess? Does the stem present this as a single, clearly formulated problem?
• Is the stem stated in simple, clear language?
• Is the stem worded so there is no repetition of material in the alternatives?
• Is the stem stated in positive form whenever possible (limited use of “not,” “except”)?
• Is the item written in a manner that’s unbiased in terms of gender, culture, race, and other factors?
• If negative wording is used in the stem, is it emphasized by capitalization?
• Is the intended answer correct or clearly best, and is there only one correct answer?
• Are all the options grammatically consistent with the stem?
• Are all the options parallel in structure and form?
• Are the options free from verbal clues to the correct answer?
• Are the distractors plausible to the uninformed?
• To eliminate length as a clue, is the correct answer about as long as one or more of the distractors?
• Have “all of the above” and “none of the above” options been avoided?
• Is the position of the correct answer varied so there’s no detectable pattern?
• Are alternatives in logical order when appropriate or in random order when called for?
• In general, does the item’s format and grammar facilitate efficient and easy test taking?
IV. Strategies for Item Production

Chapters II and III described several MCQ formats and discussed editorial guidelines for stems and options. That was the easy part. The hard part is sitting down to put your ideas on paper. This chapter describes a five-step process for turning ideas into test items. It’s intended to help item writers organize their thoughts and overcome writer’s block.
Five-Step Process

For most writers, the task begins by thinking of a topic and doesn’t end until after editing what they’ve written.

We have divided the production process into five steps because it’s convenient, seems logical, and bears some similarity to what some of our better item writers have done over the years. Whether you actually use three, four, five, or 10 steps to write items is pretty much a matter of personal work style.

The five steps we propose are:

1. Identify a topic and supporting information
2. Determine the candidate’s task
3. Formulate the stem and correct answer
4. Write the distractors
5. Review the item

Before getting into the details of each step, a couple of caveats are in order. First, although each step can be described as a separate activity in theory, in practice they meld together to form a more-or-less continuous process. Second, it’s not always necessary to perform each step; sometimes they just occur automatically. We still find it helpful to break the process down into discrete steps that can be analyzed and discussed. (Such discussion has the bonus value of sometimes helping overcome writer’s block.)

1. Identify a topic and supporting information

Most exams are assembled according to a blueprint. ARRT’s exams have content specifications that consist of a topic outline and a task inventory. The content specifications identify the knowledge to be tested, while the task inventory indicates how that knowledge may be applied in the practice setting. Both pieces are essential for item writing, as they define the scope of topics that the items can address.

To demonstrate how they work together, we’d like to work through an example. Consider this task from the Radiography task inventory:

*Modify exposure factors for circumstances such as involuntary motion, casts and splints, pathological conditions, or patient’s inability to cooperate.*
Although the physical task of modifying exposure factors is fairly simple, doing it correctly requires extensive knowledge of numerous topics including attenuation, the relationship between mAs and penetration, impact of pathological conditions on tissue density, and so on. You recall from your own experience that this is indeed an important task and that, as an entry-level technologist, your knowledge of related subjects — especially attenuation — was critical to performing this task effectively. So you decide to write an item on attenuation.

Attenuation is a basic subject on which it would be fairly easy to write a test item without any references. But don’t be so quick to pounce! Consulting references or other sources can be helpful in several ways:

- Test specifications often lack the detail needed for item development. A good textbook or article will fill in any gaps.
- References can verify that you’re using precise terminology (e.g., is the correct term technical factors or exposure factors? Compton scatter or scattering?).
- Looking into a reference will likely lead you to ideas for several test items instead of just one or two.
- ARRT requires that a submitted item be referenced.

We suggest that item writers refer to textbooks, major reports (e.g., NCRP, NRC, OSHA), curriculum guides, or lists of learning objectives, also called behavioral objectives. Major textbooks are probably the single best source. Be careful to avoid single source, internet-based references, as these sources can often be incorrect. Instead, stick with resources that have been peer-reviewed (like professional journals or major textbooks).

So, to continue with our example, let’s dig out an old textbook and look at the chapter on attenuation. As will be shown in the pages that follow, text like this from a well-organized book can serve as the basis for numerous test items.

**Supporting Information: Attenuation**

Attenuation is the reduction in the number of x-ray photons remaining in the beam after the beam passes through a substance. It is the result of the x-ray beam interacting with matter and losing energy, or photons, through these interactions. There are five mechanisms by which x rays interact with matter: coherent scattering, Compton effect, photoelectric effect, pair production, and photodisintegration. Of the five types of interactions, two are important for the production of radiographs: the Compton effect and photoelectric absorption.
The Compton effect, also called Compton scatter, occurs when an x-ray photon interacts with an outer-shell electron in body tissue, which causes the photon to lose energy and change direction, or scatter. The outer-shell electron is ejected from the atom. The ejected electron is called a secondary electron or Compton electron. Some of the scattered radiation may reach the image receptor. Because it is of low energy and strikes the image receptor from different directions, it decreases and creates a uniform darkness on the image, called fog. Although Compton scatter is typically low energy, it is still sufficient to require that x-ray examining rooms be shielded.

Photoelectric absorption results when an x-ray photon interacts with an inner-shell electron. The photon is not scattered but is absorbed by the substance, resulting in a reduction in the number of photons that pass through the substance. The inner-shell electron that is released from the atom is called a photoelectron.

One factor that determines the amount of attenuation is the type of irradiated substance. Thicker body tissue results in greater attenuation, as does more dense body tissue. When body size is doubled, the chance of x-ray interaction is doubled because twice as many electrons are available for interaction, and more photons will be absorbed. Attenuation is also affected by the atomic number of the substance because substances with high atomic numbers have more electrons available for x-ray interaction. Three cm of bone will attenuate more of the x-ray beam than 2 cm of bone, and 3 cm of bone will attenuate more than 3 cm of muscle.

2. **Determine the candidate’s task**

Once a topic has been identified, your next step is to consider what you expect the candidate to do with it. Given that written exams are limited to testing for cognitive knowledge and skill, the candidate’s task is a mental, not physical, activity. So, this step is really about deciding whether the candidate should have to remember some fact, apply a formula, interpret patient data, evaluate a radiograph, and so on.

Begin by clarifying the topic. In the example on the previous page, attenuation is the general topic, but it comprises several specific pieces of knowledge — and it’s these specific units of knowledge that most test items are really about. These smaller units of knowledge can be facts, concepts, or principles.

Facts are simply statements taken to be true. Like these:

- Attenuation is the reduction in the number of x-ray photons remaining in the beam after it passes through a substance.
- The ejected electron is called a secondary electron.
Concepts are characterized by their defining attributes. For example, the concept of a bird is defined by attributes such as feathers, two legs, wings, egg laying, and so on. The concept of radiographic quality is defined by attributes such as brightness, recorded detail, and so on.

Principles involve cause–effect relationships and often take the form of “if … then” statements. Radiologic technology is driven by principle. The inverse-square law is one very well-known principle; the relationship between kVp and penetration is another. Among the principles in the text box is: “If a substance has a high atomic number, then more electrons are available for x-ray photons to interact with, and more photons will be absorbed.”

Once the facts, concepts, and principles have been identified, it’s relatively easy to specify the candidate’s task. The item below presents several task statements related to attenuation. Each identifies — most at the beginning — the type of cognitive skill we expect to be demonstrated.

We could easily develop more. The important thing to recognize is that it’s not necessary to actually write down all of these tasks when creating test items. But it is important to locate a good reference, read the relevant sections, and give some thought to the cognitive behaviors you seek to evaluate.

Sample Tasks
The candidate will:
- Recall that fog is defined as unwanted exposure that is uniformly distributed over the image
- List the five types of interactions between x rays and matter
- Recall that the photoelectric effect and Compton effect have important implications for image production
- Recognize that coherent scattering typically has a negligible effect on radiographic quality
- Recognize the definition of a secondary electron
- Explain the event that occurs when an x-ray photon interacts with an outer-shell electron
- Given a simple line drawing of an atom (neutrons, protons, electrons), indicate the electron shell at which the photoelectric effect is likely to occur
- Identify tissue density as one of the factors that affect the amount of x-ray beam that is attenuated
Sample Tasks (continued)

- Differentiate, given a line drawing of an atom, a photoelectron from a Compton electron
- Recognize why substances with higher atomic numbers absorb more photons
- Given a list of common substances (e.g., bone, muscle, water, barium), estimate which has the greatest and least amounts of absorption
- Explain how scatter results in fog

Here are a few cognitive behaviors to use in your own work:

Analyze, Choose, Compare, Comprehend, Conclude, Define, Detect, Differentiate, Distinguish, Estimate, Explain, Identify, Indicate, List, Match, Plan, Predict, Recall, Recognize, Restate, Select, State, Understand.

3. Formulate the stem and correct answer

After you’ve considered the candidate’s task, it’s time to do some writing. The stem and correct answer are pretty straightforward. As we shall later see, writing distractors is the hard part!

Candidates must be given a clearly stated and complete problem to solve. Occasionally, it’s even OK to include information that might lead the candidate to an incorrect answer. Although we don’t want to trick them, it’s perfectly acceptable to determine whether they can differentiate relevant from irrelevant information.

It’s almost always best to phrase the stem as a direct question, which helps ensure that it poses a focused problem. If, after writing the stem and options, it’s apparent that the stem would read better as an incomplete statement, then by all means feel free to go back and revise the stem. The best item writers start with a strategy for focusing the problem. Chapter 3 offered several guidelines related to writing the stem; follow those and you’ll be in good shape.

4. Write the Distractors

The primary difficulty with writing distractors is that most of our thinking is oriented to the correct answer. When we identify information to support a topic, as in the box on the preceding page, we typically focus on correct, not incorrect or misleading, information.

TIP

The stem should include sufficient information to allow the candidate to determine the correct answer.
Here are a few tips:

• Try to anticipate incorrect responses from uninformed and misinformed candidates. The uninformed just don't know, and any distractor works for them. (Fortunately, there aren't too many of them out there.) The misinformed know only a little about a topic, or they're confused by a misconception. This is the person who mistakes quality for quantity, or forgets to invert when thinking about the inverse square law. Try to put yourself in their shoes. What are some common misconceptions about this topic? What parts are most difficult to master or easiest to forget?

• Develop distractors from irrelevant attributes — those features that define a related concept. For example, an irrelevant attribute of the photoelectric effect is its interaction with an outer-shell electron (remember that outer-shell electrons are an attribute of the Compton effect). So an item about photoelectric effect might have outer-shell electron as a distractor.

• If a test item calls for an example of a concept, bad examples can be transformed into distractors. Consider an item that asks for examples of the five types of interactions between x-ray photons and matter: It might use distractors like fusion, induction, and differential absorption.

• It’s usually pretty easy to write distractors for principles, because they deal with relationships, usually “if...then” relationships. An item that asks about the effect of kVp on image brightness could have options such as increases, decreases, or stays the same. These options all deal with the direction of the relationship. Alternatively, options can be about the strength of the relationship (e.g., “Doubling X will have what effect on Y? — halve, double, quadruple”). Options may also pertain to the shape of the relationship (proportional, geometric, logarithmic, inverse, and so on). For certain types of questions, it’s impossible to come up with four reasonable options. In some instances, it’s OK to have three, such as increases, decreases, and stays the same.

• Another feature of principles is that they are often expressed mathematically. Recall that the inverse-square law states that the intensity of radiation at a given distance from the source is inversely proportional to the square of the distance, or, \( I_2 = I_1 \times \frac{D_1^2}{D_2^2} \).
Now consider the item below:

An exposure of 200 mR is obtained at a distance of 20 inches. What will the exposure be if the distance is increased to 40 inches?

A. 16 mR
B. 50 mR*
C. 400 mR
D. 800 mR

The correct answer is: $200 \times 20^2 / 40^2 = 50$ mR. All of the options should come from misapplications of the principle, such as forgetting to square one or both values, taking the square root, dividing instead of multiplying, and multiplying instead of dividing. For this example:

- distractor A was obtained by: $40^2 \times 20^2 / 200^2 = 16$
- distractor C was obtained by: $200 \times 40 / 20 = 400$
- distractor D was obtained by: $200 \times 40^2 / 20^2 = 800$

- For some math items, plausible distractors can be created by moving the decimal, using parentheses incorrectly, or varying the number of zeros. Consider these types of distractors if the item involves converting from one unit of measure to another (e.g., SI units to conventional units), when dealing with the metric system, or for items that require scientific notation.

The bottom line: For distractors to appear plausible, they must be thoughtfully crafted. Don’t just make up wrong answers; derive them by attempting to mimic common misconceptions and mistakes. Several sample test questions that illustrate these points appear in the following pages.

5. Review the Item

Just as important reports or letters require careful proofing and editing, so do test items. And the benefit is twofold: First, it improves the item; second, the revision process can generate even more items on the same topic. Item review should be guided by the checklist presented at the end of Chapter 3.
Putting It All Together

Remember the paragraph on attenuation and the following student task statements? Here's where we convert them into test items. Several items are presented in the boxes along with comments.

1. This item evaluates the student's ability to recognize some fundamental facts about types of interactions relevant to radiography. Although pretty basic, it's a good solid item. Notice that the distractors all correspond to related concepts taken from other task statements.

   Which of the following are considered to be the two most important types of interactions for radiography?
   A. coherent scattering and photodisintegration
   B. pair production and photodisintegration
   C. Compton effect and pair production
   D. Compton effect and photoelectric effect*

2. This one goes beyond basic scientific facts by requiring candidates to understand the impact of certain types of interactions on an actual radiograph. This isn't necessarily a better item, but its relevance to practice is more obvious.

   Which of the following types of interactions between x rays and human tissue is associated with fog on an exposed radiograph?
   A. coherent scattering
   B. Compton effect*
   C. pair production
   D. photodisintegration

3. Here we get away from facts and into principles, with one of those important "if... then" relationships. Note two things about the options: First, they form pairs of opposites (generally a good approach); second, the concepts in each of the options are based on ideas taken from the list of task statements presented earlier on page 38.

   Compared to substances with lower atomic numbers, those with higher numbers:
   A. absorb more energy from the x-ray beam*
   B. absorb less energy from the x-ray beam
   C. are associated with thicker body tissue
   D. are associated with thinner body tissue
As the density of a material is doubled, the probability of an x-ray interaction:
A. is reduced by half
B. remains the same
C. is doubled*
D. is quadrupled

Why does dense material result in greater attenuation?

A. The electrons are larger in dense material, which blocks more of the x-ray beam
B. More electrons are available for interaction in dense material, which increases the number of photons absorbed from the x-ray beam*
C. As density increases, the size of the nucleus increases, and the larger nucleus absorbs more photons from the x-ray beam
D. The binding energy of the K-shell in dense material is higher; and this causes more photons to bind with the K-shell electrons
6. The first of two items below refer to a common drawing depicting interactions between x rays and matter. Simple but effective, it requires the candidate to identify a correct label for a part of the drawing. In the health sciences, items like this are highly effective (anatomy, positioning, drawings of equipment, and so on).

![Diagram]

Which number in the figure corresponds to the K-shell?
A. 1  
B. 2*  
C. 3  
D. 4

Which number in the figure indicates the likely location for photoelectric absorption?
A. 1  
B. 2*  
C. 3  
D. 4

7. Similar to the first item, the second one shows how drawings can do more than identify parts: Candidates must demonstrate understanding of a process. You can also write items about how parts interact with other parts, what happens when they malfunction, and so on (see Chapter 2).
Items with Images

Original drawings or tables that you create work the best because then no additional permissions are needed to publish your original work.

If the image that you select to accompany your item is from a textbook, you must — when submitting the item to ARRT — include the textbook title, author, copyright date, edition, and page number. ARRT will write to the publisher for permission to reprint the image on an ARRT exam. This often takes many months and your item may become outdated before it can be used.

If the image that you select to accompany your item is an original image, please make sure that you check with the institution about their policies for copying images. Make certain that all patient identifying information has been removed. ARRT prefers to receive images in bitmap, JPEG, DICOM, or TIFF format.

Please submit two copies of the image — one with no markings and one with the appropriate marking (for example, “The arrow points to what blood vessel?”)

Chapter Summary

Before leaving this chapter, let’s restate the five steps of item production:

1. Identify a topic and supporting information
2. Determine the candidate’s task
3. Formulate the stem and correct answer
4. Write the distractors
5. Review the item

We’d also like to re-emphasize that it’s really not necessary to follow this process in lock-step fashion. If you skip one, that’s fine. Merge steps together — that’s OK, too. Maybe two big steps will work: 1 and 2, then 3 through 5. Make them work for you.

The important point of the exercise is this: Obtain supporting information and think clearly about what you expect the candidate to be able to do with that information. This preliminary task isn’t something you do for each item; rather, you do it just once for a whole set of items.

Think about it: From the handful of task statements presented earlier in the chapter, it wasn’t a big chore to develop multiple items on related topics. We could have easily written another five or six items with minimal additional effort. How did we manage that? Having all the related information summarized in one place made it relatively painless for us to finally write those downright nasty distractors.
Chapter IV identified basic strategies for writing test items. Now we put them to work. We begin by discussing levels of cognitive complexity. Then we demonstrate strategies for producing items that assess those higher-order thinking skills. The final part of the chapter discusses test items that assess clinical decision-making skills — the types of skills that technologists exercise in their day-to-day work.
Critical Thinking

Levels of Cognitive Complexity

Many theories describe the cognitive processes used in clinical and didactic settings with terms like prioritizing, inferring, analyzing, problem solving, and evaluating. Phrases like higher-order thinking skills, critical thinking, and clinical decision making have enjoyed popularity in recent years.

Bloom’s Taxonomy — around since the 1950s — is the most widely recognized framework for describing levels of cognitive complexity. It identifies six levels of cognitive skills: knowledge, comprehension, application of knowledge, analysis, synthesis, and evaluation. This framework has been very useful, and all six levels come into play when writing test items. But we believe a simpler framework, consisting of just three levels of cognitive complexity, works just as well:

1. Recall/Recognition: Test items at this level require candidates to recall or recognize previously learned facts, concepts, and principles. Examples of a cognitive skill at this level: listing the bones of the foot on an anatomical drawing; being able to restate the inverse-square law verbatim.

2. Application: Test items of this nature require candidates to apply previously learned information to a practice-related problem. Calculating new exposure factors based on application of the inverse-square law is an example of this type of test item.

3. Problem Solving: Items at this level involve analyzing situations, evaluating information, and determining solutions to problems. Candidates are required to use information they already know, evaluate information that is supplied by the test item, then integrate the two to solve the problem posted by the test item. Problem solving usually requires critical thinking.

Two Important Caveats

First, these three levels aren’t carved in stone, nor are they any better than the six levels proposed in Bloom’s taxonomy. Whether there are two, three, or eight levels probably doesn’t matter. What’s important is for item writers to think about the cognitive demands of the test questions they write.
Second, a test item’s cognitive complexity depends on more than just the item itself; it also depends on the candidate who responds to that question. An item that’s problem solving for a marginal candidate might be simple recall for one who’s well prepared. Maybe this is why studies have shown that test items classified as analysis or problem solving are no more difficult than those classified as recall or comprehension.

We thought it helpful to discuss cognitive complexity because there really is such a thing as depth of knowledge: Candidates do learn different things to different degrees, and test items do vary in terms of the mental demands they place on candidates. Following are a few strategies to help you write test items that will require candidates to put on their thinking caps.

**The Socratic Dialogue**

It’s probably safe to say that Socrates was no fan of the MCQ format. History tells us that he preferred oral exams as a method for getting at a student’s true depth of understanding. That method of questioning has come to be known as the Socratic Dialogue.

The two formats are not mutually exclusive. You can write MCQs based on the Socratic Dialogue. The key is to imagine a teacher sitting across the table from an excellent student.

Let’s say that the teacher asks a basic question, like, “Which of the following tissue types attenuates an x-ray beam the greatest amount?” The student gives the correct answer. What next? What path do you take to complete your assessment? You could ask more factual questions about other tissues or other types of radiation — this would be a reasonable approach to get at the student’s breadth of knowledge. Alternatively, you could use a few strategies to get at depth of knowledge. Three strategies can turn basic recognition items into items that assess critical thinking. The strategies are: asking “why,” asking “what if,” and asking “how.”
**Asking “Why”**

The quickest way to assess knowledge at a deeper level of understanding is to require candidates to explain the rationale underlying some concept or principle. A candidate may know that bone attenuates the x-ray beam more than muscle does, but do they really know why? Alternative questions could ask the candidate to explain why some tissues absorb more than others, or to describe the conditions that result in higher levels of scattered radiation.

Which of the following is likely to decrease bone mineral density in premenopausal women?

A. cigarette smoking*
B. membership in Weight Watchers
C. nulliparity
D. use of birth control pills

Why does cigarette smoking result in decreased bone density in premenopausal women?

A. the decrease in oxygen supply associated with smoking decreases the oxygen available for bone formation
B. smoking over stimulates the production of osteoblasts
C. smoking suppresses overall metabolism thereby decreasing the regularity of the bone formation cycle.
D. smoking chemically alters estrogen so that it no longer contributes to bone formation*

The trick is to ask “why” within the confines of the MCQ format. Consider the two items above. The first simply requires students to recognize that smoking is a risk factor for osteoporosis. The second one requires some understanding of why smoking is a risk factor.

The second of these is a cognitively complex and difficult item. However, it illustrates a couple of potential limitations to asking why. First, such questions often require lengthy options, because each must offer a plausible explanation, and explanations usually require many words. Long options are OK; it just takes extra care to assure that they’re not too wordy.
Second, asking “why” can make very hard questions out of easy subject matter. When the items above were pretested as experimental questions, we found that over 90% of bone densitometry candidates knew that smoking is a risk factor for osteoporosis, but only 30% understood why. Is why important in this situation? As it turns out, the Bone Densitometry Examination Committee felt that knowledge of why for this particular topic was not essential to effective job performance, and deleted the latter of the two questions from the item pool.

**Asking “What If”**

Nothing is completely true all of the time — sometimes the correct answer depends on certain conditions. Drawing on these conditions can open the door to additional test items. The first item below is a simple one about the attenuating effects of different types of tissue. This topic can be made more complex by asking about the effects of different types of bone or of various pathologies. For example, what if the patient has received radiation therapy, or is postmenopausal? How would these factors influence density and attenuation? The latter two questions arguably require a deeper level of understanding than the first.

- Which of the following substances attenuates an x-ray beam the greatest amount?
  - A. muscle
  - B. fat
  - C. air
  - D. bone*

- Osteoporotic bone affects the interactions of x-ray with bone because it:
  - A. attenuates more photons
  - B. attenuates fewer photons*
  - C. produces more scattered radiation
  - D. decreases contrast

- Compared to normal breast tissue, the radiographic density of an irradiated breast is:
  - A. radiolucent
  - B. more dense
  - C. less dense*
  - D. of equal density
**Asking “How”**

You can determine if candidates know how some piece of information applies to their jobs. A related strategy is the *so what* line of questioning, which requires candidates to understand how certain things impact practice. The items below assess the ability to adapt and apply knowledge to nonroutine situations.

How might the radiographic technique be modified for an AP hip for a patient diagnosed with severe osteoporosis?

A. increase exposure factors
B. decrease exposure factors*
C. no change to exposure factors

What changes in exposure factors may be required for elderly patients scheduled for a mammogram?

A. increase kVp
B. decrease kVp*
C. increase focal spot
D. decrease focal spot

So far, this chapter has addressed primarily didactic knowledge. Now, we turn to the assessment of clinical skills. Although the strategies just presented (asking “why,” “how,” and “what if”) also apply to clinical skills, a few additional tricks can be helpful when writing items that require candidates to apply their knowledge to practice-related problems.

**Assessing Clinical Skills**

Let’s clarify what we mean by clinical skills. Listed below are a few examples of clinical activities that occur in the practice setting.

- Transport a patient with a fractured hip
- Set-up equipment for a PA chest radiograph for a pediatric patient
- Explain breathing instructions to patient for a PA chest radiograph
- Perform an arthrogram
- Perform a QC test for a collimator light
Each of these activities involves patients, equipment, or both. Each also requires some sort of psychomotor skill, and may even involve interpersonal or communication skills. Most importantly, none of these activities can be directly assessed with MCQs. Not even the most cleverly written test item can test a technologist’s ability to transport a patient or set up equipment. Truly assessing such skills requires observing a technologist’s interaction with an actual patient in a clinical setting with real equipment.


The alternative is to develop clinically relevant test items that test the knowledge that is required to safely perform the tasks in the ARRT Task Inventory for your modality. Key to writing good practice-based items is the fact that all clinical activities require some type of knowledge. In other words, you can assess clinical skills by assessing the knowledge and cognitive skills that underlie the procedures. Here are four sources:

1. **Steps of a Procedure**

MCQs can determine whether a candidate can identify the appropriate steps and place those steps in proper sequence. Alternatively, candidates can be given the steps and asked to name the procedure or explain its purpose. The item below requires candidates to know that anesthetic is given prior to doing a bronchogram. The next two items pertain to QC tests: one for a compression device on a mammography unit, and the other for a collimator light on a radiographic unit.

> When performing an arthrogram, what is usually done prior to inserting the needle?

A. a local anesthetic such as lidocaine is administered to the site*
B. the patient is instructed to exercise the joint
C. a general anesthetic is administered so that the patient remains unconscious
D. lab tests are performed to determine the patients BUN

To correctly answer the first item below, the candidate must know not only that the towel needs to be placed on the cassette before the scale, but also what equipment is used (e.g., towels are, phantoms aren’t). The *1999 ACR Mammography Quality Control Manual* clearly describes the steps of this procedure.
What is the first thing to do when using a bathroom scale to perform a compression test on a mammographic unit?
A. activate and deactivate the compression device 3 times to warm it up
B. place the scale between the cassette and the top compression paddle
C. place a towel on the cassette*
D. place a phantom on the cassette

A quality control test requires the steps 1–5 as summarized below.
1. place film on table of x-ray unit
2. turn on collimator light to illuminate image receptor
3. place 4 pennies at corners of light field
4. expose image receptor at 40” SID
5. process image and inspect

What type of equipment malfunction will this QC test detect?
A. faulty exposure switch
B. improper SID setting
C. defective mA meter
D. inaccurate collimator light*

Answering the second item really involves critical thinking — at least for most candidates who haven’t actually tested a collimator light in this perfectly legitimate, but somewhat novel, way. The candidate must infer the purpose of the QC test from the steps that are given. The downside to this item is that it consumes a lot of space and requires a lot of reading. But such items are worth the effort if written well.

2. Concepts and Principles Underlying a Procedure

Although test items about the steps of a procedure are useful, they often require little more than recall of facts. It’s possible to move beyond recall, with items that assess:

• How a certain step is performed
• Why a certain step is performed; why it is needed
• Why one step occurs before or after another
• Types of equipment and instrumentation required; knowledge of that equipment (e.g., how it works)
• Anatomy, physiology, or pathology involved in the procedure
• Critical things to be careful of when performing a step
• What happens if a certain step is omitted, performed incorrectly, or performed with inadequate instrumentation
• Indications or contraindications for a procedure
The items below assess some of these cognitive skills. The first two pertain to an ERCP, while the remaining two are based on the mammography compression test. Most require the candidate to demonstrate fairly detailed knowledge about the steps of a procedure by asking “why”, “how”, or “what if”.

When performing an ERCP, contrast is used to enhance the biliary ducts. To introduce the contrast, it is necessary to first locate what anatomical structure with the endoscope?

A. common bile duct  
B. ampulla of Vater  
C. islets of Langerhans  
D. sphincter of Oddi

When performing an ERCP, why is the larynx anesthetized prior to inserting the endoscope?

A. to prevent esophageal reflux when contrast is introduced  
B. to minimize superimposition of the thyroid cartilage  
C. to minimize interference from the tongue  
D. to prevent gagging when the endoscope is introduced

Why is it necessary to place a towel on the cassette holder before performing a compression test on a mammographic unit using a bathroom-type scale?

A. to prevent damage to the cassette holder  
B. to protect the scale  
C. to simulate the compressibility of breast tissue  
D. to calibrate the unit before performing the compression test

A mammography unit should be subjected to a compression test whenever inadequate compression is suspected, and every:

A. day  
B. week  
C. month  
D. 6 months
3. Clinical Data or Procedure Outcomes

Procedures result in a product that’s either an end in itself or used as input to some other procedure. Here are a few of the related cognitive skills that can be assessed with standard MCQs.

- Interpreting the results of, or output from, a procedure
- Evaluating results or output for quality (e.g., radiographic contrast, distortion, etc.)
- Recognizing limitations of the process or the instrumentation involved
- Knowing what and how to document

Two items below illustrate these ideas. The first one picks up on the mammography QC theme. It requires candidates to evaluate the outcome of the QC test and justify a course of action. MQSA requires it; ACR requires it; so they better know it!

A compression test on a mammographic unit consistently gives readings of 21, 22, and 23 lbs on three testings obtained within a few minutes. What should be done?

A. record the average value, and repeat the test at the next scheduled interval because the values are within acceptable limits
B. record the high value, and repeat view the test at the next scheduled interval because the values are within acceptable limits
C. contact a service engineer or physicist because the values are not within acceptable limits*
D. recognize that the measurements are inconsistent, and repeat the test on the next working day to confirm the results

The PSA level for a 63-year-old male is found to be 3.1. His general health appears to be normal and nothing remarkable was noted on the digital rectal exam. What would be the next step in patient care?

A. have the patient return in a year for follow-up*
B. perform another digital rectal exam
C. order a transrectal ultrasound of the prostate
D. perform a needle prostate biopsy

The second item, from the field of radiation oncology, requires the candidate to interpret clinical data, differentiate normal from abnormal values, and determine a course of action. This item is probably getting into the domain of the medical practice, but nonetheless illustrates the type of clinical problem solving that MCQs can test. For example, an item might require evaluating radiographic quality by presenting a mammogram and asking the candidate to decide what view to do next.
4. Unexpected Circumstances: What to do Next

Here’s a twist on a strategy that was briefly mentioned earlier. Sometimes, for various reasons, things go wrong. It could be that the patient does something unexpected, has variant anatomy, or is limited by injury or pathology. Equipment problems may also require a technologist to respond quickly.

The item below asks the candidates what to do next. Keep in mind that items like this often require common sense or sound clinical judgment, and it can be challenging to write distractors that are plausible but incorrect. Another challenge is that opinions can vary: What’s viewed as appropriate by one expert might be considered a waste of time by another. Even so, this type of item is often worth the effort.

A patient for a routine chest radiograph exhibits seizure-type behavior, and then falls to the floor. He appears to be unconscious, but breathing.

What should be done first?
A. check for head injuries due to the fall
B. obtain radiographs for any regions where injury is suspected
C. attempt to arouse the patient
D. call or send for a physician as quickly as possible*

Chapter Summary

This chapter presented a simplified cognitive taxonomy consisting of three levels of processing: recall/recognition, application, and problem solving. Although it seems that most items are written at the recall level, it’s not difficult to write items that involve application or problem solving. Strategies for writing items at the higher two levels include asking “why,” “what if,” and “how.”

We also discussed the nature of clinical problem solving and how MCQs can be written to get at clinical skills. Although it’s not feasible to write items that directly evaluate a candidate’s ability to actually carry out a procedure, it is possible to assess cognitive processes — like knowledge of the steps of a procedure and of the principles underlying each step; ability to evaluate the data, results, or other outcomes from a procedure; and skill at managing unexpected circumstances.

Applying the techniques covered here, many item writers find they can make their multiple-choice items more challenging, more interesting, and more relevant to clinical practice.
Appendix A

Formats NOT Used by ARRT

ARRT doesn’t use the following formats:

True-False and Multiple True-False

_Description:_ Most people are quite familiar with the true-false item format. With a true-false item, a statement is presented and the examinee indicates whether the statement is either true or false. There are only two possible responses for each item. A multiple true-false item consists of an introductory phrase or stem, followed by a set of specific items related to the stem. The examinee indicates whether each item is or is not true. Examples of multiple true-false items appear below.

**Grid cut-off may result from:**

- an off-center tube  T* F
- grid motion being started before exposure is made T F*
- improper SID being used with a focused grid T* F
- increased OID T F*

**For each of the following statements about grids, indicate which is true and which is false.**

- the use of grids improves radiographic contrast T* F
- grids should be used routinely for low kVp procedures T F*
- grids reduce scatter T* F

*Why ARRT does not use this item type:* Since the examinee has only two options, an examinee with no knowledge of the subject matter has a 50-50 chance of getting the item correct. Often, the stem of the true-false item must be written so specifically that the examinee is given clues as to the correct answer. In those cases, the examinee will have more than a 50-50 chance of getting the item correct with minimal or no knowledge of the subject matter.
Matching

Description: A matching item format is two columns of terms or phrases and the examinee is asked to find the relationship between a term/phrase in one column and a term/phrase in the other column. They test the examinee’s ability to find the relationship between two sets of stimuli.

Examples:

**Directions:** Appearing below is an answer list followed by several statements. For each statement, choose the one answer (A, B, C, or D) that is most closely related to the statement. Answers may be used once, more than once, or not at all.

<table>
<thead>
<tr>
<th>Answer list</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. radiographic density</td>
</tr>
<tr>
<td>B. radiographic contrast</td>
</tr>
<tr>
<td>C. recorded detail</td>
</tr>
<tr>
<td>D. distortion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>usually increases with increasing magnification</td>
<td>(D)</td>
</tr>
<tr>
<td>degree of blackening of a radiograph</td>
<td>(A)</td>
</tr>
<tr>
<td>inversely proportional to kVp</td>
<td>(B)</td>
</tr>
<tr>
<td>also known as resolution</td>
<td>(C)</td>
</tr>
<tr>
<td>controlled by mAs; influenced by kVp</td>
<td>(A)</td>
</tr>
<tr>
<td>a misrepresentation of size or shape</td>
<td>(D)</td>
</tr>
</tbody>
</table>

**Directions:** The following items require you to compare related concepts. Appearing below is an answer list followed by several statements. For each statement, choose the one answer (A, B, C, or D) that is most closely related to the statement. Answers may be used once, more than once, or not at all.

<table>
<thead>
<tr>
<th>Answer list</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. radiographic density</td>
</tr>
<tr>
<td>B. radiographic contrast</td>
</tr>
<tr>
<td>C. both A and B</td>
</tr>
<tr>
<td>D. neither A nor B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Statements</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree of blackening of a radiograph</td>
<td>(A)</td>
</tr>
<tr>
<td>inversely proportional to kVp</td>
<td>(B)</td>
</tr>
<tr>
<td>can be controlled by radiographer</td>
<td>(C)</td>
</tr>
<tr>
<td>also known as resolution</td>
<td>(D)</td>
</tr>
<tr>
<td>controlled by kVp; influenced by mAs</td>
<td>(B)</td>
</tr>
<tr>
<td>a misrepresentation of size or shape</td>
<td>(D)</td>
</tr>
</tbody>
</table>

In the second example, note that option C is similar to “all of the above,” while option D corresponds to “none of the above.”

*Why ARRT does not use this item type:* This type of item is best suited for testing recall and is not very effective for testing higher order knowledge.
Fill-in-the-Blank

Why ARRT does not use this item type: Item writers occasionally confuse the incomplete statement and sentence completion (fill-in-the-blank) formats. For example, an item might appear as shown below:

The degree of ____________ that is seen on a radiograph is referred to as density:
A. blackening
B. clearing
C. gray-scale
D. contrast

The candidate’s task is to identify the word or phrase that goes in the blank (e.g., “blackening” or “darkness”). Most experts agree that the sentence-completion format often leads to items that aren’t very clear. ARRT does not accept items in this format.

Other Formats

A few other widely used formats are worthy of brief mention — primarily to discourage their use.

• Avoid formats such as “none of the above” and “all of the above.” Anything they may accomplish can be better achieved with the multi-select format.

• Stand-alone true-false items have some merit, primarily because they allow more questions to be asked in a shorter time frame. But building a good true-false exam can be a challenging task.
Appendix B

Item Review and Critique

These sample items identify problems and provide solutions.

The amount of radiation necessary to produce a noticeable skin reaction is called an:
A. depth dose
B. erythema dose*
C. filtered radiation dose
D. irradiation dose

Problem: Since the stem ends in an, the correct answer must begin with a vowel.
Solution: Some might change the stem to a(an), but we suggest adding a or an to each option.

What is the normal kVp range used in mammography?
A. 20–25 kVp
B. 30–35 kVp*
C. 25–40 kVp
D. 35–50 kVp

Problem: The options overlap; thus C is partially correct.
Solution: Ranges should not overlap. Also, try to make them the same width, like: 30–35; 40–45.

What is the primary reason for spreading a treatment dose over a number of applications rather than giving it all at once?
A. normal cells repair themselves more quickly than cancer cells*
B. it makes less efficient use of staff time since multiple visits are required
C. evens out the work load
D. multiple exposures increase the probability of negative side effects

Problem: Options B and D are not plausible. The stem asks for an advantage, but these options are obviously disadvantages.

Even option C is a bit silly. Work load should never be the reason for choosing a method of treatment.
In sum, anyone with common sense would choose A.
Solution: The three distractors should be rewritten.
Artifacts that occur in ultrasound imaging include all of the following EXCEPT:

A. scanning the wrong area*
B. demonstrating posterior enhancement
C. producing acoustic shadowing
D. slice thickness

**Problem:** The stem is a negative; it's OK but not optimal. The real flaw is in the options. On one hand, option A has to be correct because it is not even an artifact.

On the other hand, the stem tells us to look for an artifact that does not occur; so option A is not a logical choice because it is not even an artifact. Boy, is this confusing!

**Solution:** Clarify the intent of the stem and rewrite option A so that it is an artifact, but one that does not occur in ultrasound.

Three of these sentences about the prostate are correct. Which one is incorrect?

A. the prostate capsule is indistinct from the surrounding fascial tissue
B. the normal average size prostate is 4 x 3 x 3.8 cm
C. the seminal vesicles are paired structures
D. there is only one vas deferens and it originates from the epididymis*

**Problem:** Just another example of an unfocused stem and wandering options. One option pertains to size, while each of the others deal with other anatomical features.

**Solution:** Pick an option and build the stem and new options around it. Examples: What is the approximate size of the prostate? Then all options would pertain to size. Or, Where do the vas deferens originate? Here all the options would list alternative origins.

An 18-year-old patient with a leg injury from an automobile accident is referred to the radiology department by the ER physician. The written request specifies radiographs to determine if the kneecap is fractured. What is the medical term for kneecap?

A. mandible
B. femur
C. patella*
D. flabella

**Problem:** Although all that information in the stem sounds clinically relevant, it is just window dressing. It makes the stem distracting and hard to read. This might be OK for a reading test, but not for a certification exam.

**Solution:** Drop everything from the stem except the last sentence.

(Continued on the next page)
What bone is juxtaposed to the radius?
A. ulna*
B. humerus
C. scaphoid
D. tibia

Problem: Why use a term like juxtaposed? This is another item for the reading comprehension test.
Solution: Replace juxtaposed with adjacent to, next to, or parallel to. Or use medically relevant language like medial, lateral, proximal, distal.

All of the following should be avoided by patients receiving head and neck radiation EXCEPT:
A. alcohol
B. high caloric foods*
C. spicy or acidic foods
D. dry or coarse foods

Problem: Is it necessary to state this item in the negative? It even has a double negative of sorts (avoided… except). Options C and D each have two elements connected by the word or, which further complicates things. All in all, this item has 2 negatives, 1 and, and 2 ors.
Solution: Rewrite the stem to: Which of the following should be recommended for a patient receiving radiation therapy to the neck? Then carefully verify that the wording of options C and D is exact.

To increase percentage depth dose, one could:
A. decrease treatment distance
B. remove the filter
C. lower tube current
D. increase treatment distance*

Problem: Options A and D are paired opposites, which makes them attractive to testwise students.
Solution: Revise the other options so that they form a pair, like:
increase filtration, decrease filtration
OR
increase treatment time, decrease treatment time

Which of the following is commonly given for relief of minor pain?
A. an analgesic
B. heparin
C. acetaminophen*
D. Vesprinv

Problem: Options overlap: C is a subset of A. If C is correct, then A also has to be correct.
The real problem is that the options are written at different levels of specificity. Option A is a drug class, B and C are generic names, and option D is a trade name.
Solution: Either stick with classes (analgesics, corticosteroids) or generic names (acetaminophen, diphenhydramine).
A technologist in your department informs you the automatic exposure control seems to be malfunctioning. You inspect the equipment and agree. What should be done next?
A. perform the necessary adjustments
B. tell the technologist to use manual exposure based on technique charts
C. notify the radiation physicist*
D. notify the department manager

Problem: Items like this are sometimes institution specific. Option C is keyed as correct, but option D might be correct for many institutions. Some facilities might even have service engineers.
Solution: Be careful about items that get into practice activities that legitimately vary from one setting to the next. Such items might be phrased like, According to the NRC, or According to MQSA guidelines.

The radiographic appearance of the breast may be affected by:
A. age
B. hormonal status*
C. intake of ascorbic acid
D. number of previous mammograms

Problem: Here is a different type of “overlapping options” problem. In this case, age and hormonal status are highly related, so option A is potentially correct.
Solution: Options should be independent. Revise option A.

What is normal adult body temperature?
A. 99.4° F
B. 98.6° F*
C. 37.2° C
D. 37.6° C

Problem: OK, this is a trivial item, but it does illustrate an important point. The options have multiple units of measurement: Fahrenheit and Celsius. This is not necessarily bad — it depends on the purpose of the item.
Solution: If the intent is to determine if students know normal body temperature, then they should be asked in the temperature units they should be expected to know. If they should know both units, then two questions might be legitimate.
However, if the purpose of the item is to determine if students can convert from one unit to the other, then the stem should be rewritten, and the distractors should be derived from misusing the conversion rule.

(Continued on the next page)
Radioactive materials may be disposed of by all of the following EXCEPT:

A. by transferring it to a licensed land disposal facility
B. decayed in storage, released into general waste if below specified radiation limits
C. they may be returned to the licensed supplier
D. encased in a lead container, released into general waste

Problem: It's negatively-worded, but that's a minor issue here. The major problem is that not all options complete the stem in a grammatically correct way. They are not parallel in structure.

Option A is OK, but C surely is not. (Neither are B and D for that matter). Sharp students will wonder how can an option be correct if it does not logically complete the stem.

Solution: Put the word by at the end of the stem and start each option with an ing verb. Or, the best cure for messy options is to state the stem as a question like this:

Which of the following methods should NOT be used for disposal of radioactive materials?

A. transferring them to a …
B. decaying them in storage and releasing …
C. returning them to …
D. encasing them …

To increase the depth of penetration of a sound beam a sonographer should:

A. decrease frequency
B. increase frequency
C. increase the velocity
D. decrease amplitude

Problem: Options A and B are a pair of opposites, which means that one of them is probably correct.

Solution: Create another pair of opposites (just be sure they are not correct). Another solution is to have no pairs. For example, just change option B to increase intensity.

The total radioactivity of a sample is 32 mCi. After 12 days the radioactivity of the same sample is 4 mCi. Its physical half-life (in days) is:

A. 8
B. 2
C. 4*
D. 12

Problem: The options are not in logical order.

Solution: Arrange options from lowest to highest. Also consider adding days to each option for ease of reading.
When dealing with an asthmatic patient the sonographer should do what?

A. place the patient in the Trendelenburg position
B. remain calm and confident*
C. continue scanning while help comes
D. prohibit the patient from taking his own medications

**Problem:** The stem is vague. Apparently, the asthmatic patient has a reaction, although the stem does not say this. Also, the options are a problem. Option B is a give-away. In fact, it could be the correct answer for any number of questions.

**Solution:** Revise the stem to something like: A patient experiences an asthmatic episode during a routine abdominal scan. What should be done?

**Comment:** It’s tough to write distractors for “common sense” patient care items like this. Often, the incorrect answers are too obviously incorrect. Try to write on topics that can be backed up by scientific principles (e.g., normal values, body mechanics), best practice guidelines, or rules and regulations.

---

A patient for a GI study requires special dietary instructions for a scan to be performed the next day. When communicating the instructions, what should the technologist do to ensure that instructions will be understood by the patient?

A. visual contact between patient and self*
B. good posture
C. dress appropriately
D. occasional touching for emotional support

**Problem:** This is similar to the last item in that it requires only common sense, and has only vague support for the correct answer. Furthermore, the best answer seems to be missing (asking the patient to restate the instructions).

**Solution:** If the item is kept, some options would be rewritten to include a verb (e.g., maintain good posture).
Appendix C

Style Sheet

These are the editorial conventions used in developing exams. Some of the conventions may seem arbitrary, but they are necessary for consistency across the certification categories.

Grammar, Usage, and Style

Punctuation

apostrophe
- There is no apostrophe used with plural forms of years: 1700s, 1940s
- There is no apostrophe used with plural numerals: count by 5s
- There is no apostrophe used with plural forms of acronyms: UVs, ICBMs, RVs

caps
- When negative words such as NOT, or LEAST, or other similar negatives are used in the stem, they should be in caps.

commas
- Use the serial comma at all times.
  Example: The flag is red, white, and blue
- Use a comma in numerals of four or more digits (other than years).
  Example: 3,589
- Use commas (not semi-colons) followed by a single space to separate ordered pairs.
  Example: (2, 3), (5, 6), (8, 9)
- When numbers with multiple number places are spelled out within an item, do NOT insert commas.
  Example: two thousand five hundred seventy two

contractions
- Do NOT use contractions in test items

dates
- Use a hyphen to link two numerals that represent a continuous sequence.
  Examples: January 9–14, 1869–1875
- There is no apostrophe used with plural forms of years:
  Example: 1700s, 1940s
Punctuation

hyphenation

- Use hyphens for negative signs.
- Compound adjectives — hyphenation rules are many and confusing. Generally speaking, when compound adjectives are shown hyphenated in a dictionary, one can assume that the expression is only hyphenated when it occurs directly before a noun:

**Examples:**

Hyphenated: “X-ray machine”
Not hyphenated: “the x rays were detected”
Hyphenated: “single-phase generator”
Not hyphenated: “operated on a single phase”

<table>
<thead>
<tr>
<th>Use this</th>
<th>NOT this</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonionic</td>
<td>non-ionic</td>
</tr>
<tr>
<td>Revascularization</td>
<td>re-vascularization</td>
</tr>
<tr>
<td>Multidetector</td>
<td>multi-detector</td>
</tr>
</tbody>
</table>

**Exception:**

intra-aortic      NOT: intraaortic

- In general, do **NOT** use a hyphen to set off a prefix at the beginning of a word or a suffix at the end of a word.

initials

- Usage note: There are no spaces between the initials in proper names.

**Example:** P.B.S. Pinchback

italics

- Indicate use of italics in the note field on the item submission screen and indicate what area (stem, options) that it applies to.

item punctuation

- In multiple-choice items with sentence fragments or single-phrase answer choices/options, the first word of each option is lowercase (unless it is a proper noun), and there is no terminal punctuation.

question marks

- In multiple-choice items with quoted material at the end of the stem, be sure that any question mark related to the stem is placed outside the quotation marks.

semi-colons

- Lists comprised of a series of steps or related thoughts should end in semi-colons, with the final item ending in a period.

symbols

- Use hyphens for negative signs.
- Use appropriate accents in foreign words or names.
- Indicate use of special symbol(s) in the note field and indicate what area (stem, options) that it applies to.
Capitalization

proper names

• Proper names should be capitalized according to Dorland’s or Stedman’s Plus medical dictionaries.

• Eponyms (medical name derived from a person): When an eponym is included in the name of a disease, syndrome, sign, position, or similar designation, capitalize the eponym but NOT the common noun. Consult Dorland’s or Stedman’s Plus medical dictionaries.

  Example: Crohn disease.

exhibits/art labels

• When exhibits contain capitalized labels or numbered parts, the answer choices should also contain the capitalized labels.

  Examples: Part 1, Number 2, Organ 4, Arrow 5, Box 7

• The decision to use numbers or letters may be driven by the original exhibit. If the exhibit came with labels, retain the use of whichever labels were on the original. If the exhibit is “clean,” either numbers or letters are acceptable. Numbers may be the preferred choice to avoid confusion with the answer choices; i.e., options A, B, C, and D.

• Refrain from using the pound sign (#) with numbers. Simply: What is arrow 5 pointing to?

• Initially, an attempt should be made to arrange any arrows in order; i.e., ascending either clockwise or counter clockwise; however, keep in mind that if additional arrows are needed in the future, it will be difficult to maintain the initial order.

Numbers

commas

• Use a comma in numerals of four or more digits (other than years).

  Example: 3,589

• Use commas (NOT semi-colons) followed by a single space to separate ordered pairs.

  Example: (2, 3), (5, 6), (8, 9)

• When numbers with multiple number places are spelled out within an item, do NOT insert commas.

  Example: two thousand five hundred seventy two

dash

• A hyphen is used to show continuity in numerals. Do NOT use the word to between numerals.

  Examples: January 11–16, pages 556–885, 1920–1945
### Numbers

**italics**

- Indicate use of italics in the note field on the item submission screen and indicate what area (stem, options) that it applies to.

**data**

- Refer to in plural form when appropriate.
  
  **Example:** these data

**hyphenation**

- Use hyphens for negative signs.

**leading zero**

- Use leading zeros with decimals to avoid confusion.
  
  **Example:** use 0.35 rather than .35
  
  use -0.35 rather than -.35

**numbers/numerals**

- Use numbers one through ten spelled out and numerals for 11 and up. When numbers are mixed, use numerals to express quantities.
- In mathematical questions, numerals may be preferable for numbers less than eleven to highlight key numbers.
  
  **Example:** A rectangle measures 4 by 6 in

**percent**

- In text, spell out the word percent.
  
  **Examples:** one percent, 27 percent
- In charts, graphs, etc., use numerals and the percent symbol.
  
  **Example:** 10%

**ranges**

- If a symbol is used in a range of numbers, it should be repeated with each number.
  
  **Example:** 25% – 30%
- A full word or an abbreviation used in place of a symbol is given only with the last number.
  
  **Example:** 9 by 12 feet

**spacing**

- Use a single space between numerals and symbols denoting operations (addition, subtraction, multiplication, or division).
Numbers

units of measurement

- Units of measurement associated with numbers should always be referenced in the stem and may be referenced in the options whenever possible.

  **Example:** What is the amount of separation in centimeters between point A and point B?

  A. 2 cm
  B. 3 cm
  C. 4 cm
  D. 5 cm

Examples:

- cm centimeters
- m meter
- ft foot, feet
- L liter
- sec, s second
- hr hours
- A amperes
- mAs milliampere seconds
- V volt
- kVp kilovolt peak
- Hz hertz
- R roentgen (SI unit is C/kg)
- rad radiation absorbed dose (SI unit is Gy)
- rem radiation equivalent man (SI unit is Sv)
- m meter
- Ci curie (SI unit is Bq)
- C/kg Coulombs per kilogram (conventional unit is R)
- Gy gray (conventional unit is rad)
- Sv sievert (conventional unit is rem)
- Bq becquerel (conventional unit is Ci)
- mu monitor units (Radiation Therapy)

Abbreviations

measurement

- If there are numbers (values) associated with the unit of measurement, the unit of measurement will be abbreviated. If the unit of measurement is used without a value, do **NOT** abbreviate. Spell out units of measurement that might be confusing.
- Do **NOT** use periods for most measurement abbreviations (e.g., mm, cm, ml, kg, ft, mph, etc.) Follow AMA Manual of Style.

time

- Use a.m. rather than AM or A.M.
Abbreviations

vertebrae and spinal nerves

- Follow AMA Manual of Style for abbreviation guidelines.

**Examples:**

<table>
<thead>
<tr>
<th>Region</th>
<th>Vertebrae</th>
<th>Spinal Nerves</th>
</tr>
</thead>
<tbody>
<tr>
<td>cervical</td>
<td>C1 through C7</td>
<td>C1 through C8</td>
</tr>
<tr>
<td>thoracic</td>
<td>T1 through T12</td>
<td>T1 through T12</td>
</tr>
<tr>
<td>lumbar</td>
<td>L1 through L5</td>
<td>L1 through L5</td>
</tr>
<tr>
<td>sacrum</td>
<td>S1 through S5</td>
<td>S1 through S5</td>
</tr>
<tr>
<td>coccyx</td>
<td>4 fused, coccygeal</td>
<td>not individually designated</td>
</tr>
</tbody>
</table>

- Hyphens are used for intervertebral spaces (including neural foramina) and intervertebral disks as follows:

<table>
<thead>
<tr>
<th>Space</th>
<th>Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2-3 (space between C2 and C3)</td>
<td>C2-3 disk</td>
</tr>
<tr>
<td>T2-3 (space between T2 and T3)</td>
<td>T2-3 disk</td>
</tr>
<tr>
<td>L2-3 (space between L2 and L3)</td>
<td>L2-3 disk</td>
</tr>
<tr>
<td>C7-T1 (space between C7 and T1)</td>
<td>C7-T1 disk</td>
</tr>
<tr>
<td>L5-S1 (space between L5 and S1)</td>
<td>L5-S1 disk</td>
</tr>
</tbody>
</table>

- Ranges of vertebrae are expressed as in the following examples; use letters for both the first and last vertebra in the indicated range:

**Example:**

C3 through C7  3rd through 7th cervical vertebrae

**ARRT**

The following list of abbreviations is specific to ARRT exams and may be added to.

**General Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVL</td>
<td>half-value layer</td>
</tr>
<tr>
<td>TLD</td>
<td>thermoluminescent dosimeter</td>
</tr>
<tr>
<td>SI</td>
<td>system international</td>
</tr>
</tbody>
</table>

**Positioning Terms and Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP</td>
<td>anteroposterior</td>
</tr>
<tr>
<td>PA</td>
<td>posteroanterior</td>
</tr>
<tr>
<td>LAO</td>
<td>left anterior oblique</td>
</tr>
<tr>
<td>LPO</td>
<td>left posterior oblique</td>
</tr>
<tr>
<td>RAO</td>
<td>right anterior oblique</td>
</tr>
<tr>
<td>RPO</td>
<td>right posterior oblique</td>
</tr>
</tbody>
</table>

**Position, Projection, and View**

- *radiographic position*
  - Refers to a specific body position and describes the patient’s physical position.
- *radiographic projection*
  - Refers to the path of the central ray.
- *radiographic view*
  - Refers to the patient’s anatomy as seen by the film or other recording medium; used when describing a radiograph or other exhibit.
### ARRT

#### Exposure Distances
- **OID**: object-image receptor distance
- **SID**: source-image receptor distance
- **SSD**: source-skin distance
- **SAD**: source-axis distance
- **SCD**: source-collimator distance
- **STD**: source-tray distance
- **SOD**: source to object distance

#### Units of Measurement
- **cm**: centimeters
- **m**: meter
- **ft**: foot, feet
- **L**: liter
- **sec, s**: second
- **hr**: hours
- **A**: amperes
- **mAs**: milliampere seconds
- **V**: volt
- **kVp**: kilovolt peak
- **Hz**: hertz
- **mu**: monitor units (Radiation Therapy)
- **R**: roentgen (SI unit is C/kg)
- **rad**: radiation absorbed dose (SI unit is Gy)
- **rem**: radiation equivalent man (SI unit is Sv)
- **m**: meter
- **Ci**: curie (SI unit is Bq)
- **C/kg**: Coulombs per kilogram (conventional unit is R)
- **Gy**: gray (conventional unit is rad)
- **Sv**: sievert (conventional unit is rem)
- **Bq**: becquerel (conventional unit is Ci)

#### Multipliers
- **μ**: micro
- **μSv, μCi**
- **m**: milli
- **mL, mrem, mA**
- **c**: centi
- **cm, cGy**
- **k**: kilo
- **kV, kVp**
- **M**: million
- **MV**

- General rule: no periods; no spaces within a unit; no "s" for plural.
Plurals/Possessives

apostrophe
• Usage note: classmates’ opinions, people’s lives, and 1800s.
• There is no apostrophe used with plural forms of years: 1700s, 1940s
• There is no apostrophe used with plural numerals: count by 5s
• There is no apostrophe used with plural forms of acronyms: UVs, ICBMs, RVs
• Do NOT use an apostrophe with eponyms (medical name derived from a person):
  Example: Crohn disease

data
• Refer to in plural form when appropriate.
  Example: these data

Spelling

conventions
• Consult either Dorland’s or Stedman’s Plus medical dictionaries.

drug names
• Consult the PDR for spelling of drug names.

Grammar/Usage

articles
• In multiple-choice items that use the sentence completion format, keep articles with the stem unless the answer options require different articles (e.g., “a” vs. “an”).

negatives
• Avoid using a “double negative” in items.
  Example: All of [these] except . . . is NOT . . .
• In stems, capitalize and bold negative terms.

pronouns
• A pronoun must agree with its antecedent in number, gender, and person.
• In general, avoid use of pronouns to avoid confusion and reference to a specific gender.

parallel language
• Multiple-choice item answer choices/options must be syntactically parallel with the stem and with each other
• Lists of items or topics must be parallel.

verbs
• A verb must agree with its subject in number and person.
Terminology

drug names
and medical devices

• As a standard, avoid the use of brand-name medications, manufacturer’s-name medications, or vendor-specific equipment, etc. and use generic terms. Use only the generic term, if the generic term is commonly known (as defined by the examination committee). If the generic term in not commonly known without the brand-name (as defined by the examination committee), use both the generic and brand name.

• In cases where there is no other alternative but to use a trademarked or registered trademarked nomenclature:
  - first state the scientific or generic name,
  - then include the trademark name in parentheses next to the generic name,
  - then include the correct symbol as defined by the manufacturer within the parentheses.

  Example: I-131 tositumomab (Bexxar®)

• In rare instances, the trademark name will be the only appropriate and universally recognized name within that discipline, as defined by the subject matter experts:

  Example: Pigg-O-Stat™

• In some instances, use the industry-recognized term as identified by that discipline’s committee of subject matter experts.

  Example: aspirin [should be lower case]

  Example: glucagon

• The Exam Development Coordinator can use the PDR or manufacturer’s website to determine the correct use of ™ or ®.
Test Items

“a (an)”  • Do NOT use this construction in test items.

“all of the above”  • Do NOT use this construction in test items.

“and/or”  • Do NOT use this construction in test items.

answer choices or options  • Answer choices are set in random order, not in order alphabetically or by length.
  • When answer choices are numeric, they should be aligned by decimal point and placed in ascending order.
  • For answer choices where numeric options are preceded by an additional designation (e.g., $), the designation should be aligned to the first digit of the options.

  Example:
  A. $0.50
  B. $0.75
  C. $1.00
  D. $1.25

contractions  • Do NOT use contractions in test items unless a contraction is being tested.

exhibits  • Remove all patient identification from all exhibits, videos, and images.
  • If an exhibit is used in an item, refer to it in the item stem

  Example: On MAM23, the arrow is pointing to . . .
  • Refrain from naming the exhibit. (e.g., On image MAM23, In illustration THR3, etc.)
  • When referring to arrows, be consistent with the verb choice.

  Example: On MAM23, arrow 3 points to — or arrow 3 indicates.
  • Do NOT use the pound sign # in either the stem or on the exhibit to designate “number.”
Test Items

item formats
- **Closed stem**: This is usually a complete question. The answer choices do not have ending punctuation.
- **Open stem**: The stem is completed in the answer choices. The first word in the answer choices is lowercase and the answer choices do **NOT** have ending punctuation.
- Multiple-choice item answer choices/options must be syntactically parallel with the stem and with each other.

"is (are)"
- Do **NOT** use this construction in test items.

"none of the above"
- Do **NOT** use this construction in test items.

parallel language
- Multiple-choice item answer choices/options must be syntactically parallel with the stem and with each other.

3-option items
- The use of the 3-option multiple-choice format should be reserved for items that clearly have only three choices — **NOT** in cases when a third distractor is difficult to find.

  **Example:** Following the administration of contrast, a patient’s temperature will:
  
  A. increase
  B. decrease
  C. remain constant
Appendix D

The Joint Commission
Do Not Use List

Facts about the Official “Do Not Use” List

In 2001, The Joint Commission issued a Sentinel Event Alert on the subject of medical abbreviations, and just one year later, its Board of Commissioners approved a National Patient Safety Goal requiring accredited organizations to develop and implement a list of abbreviations not to use. In 2004, The Joint Commission created its “do not use” list of abbreviations (see below) as part of the requirements for meeting that goal. In 2010, NPSG.02.02.01 was integrated into the Information Management standards as elements of performance 2 and 3 under IM.02.02.01.

Currently, this requirement does not apply to preprogrammed health information technology systems (for example, electronic medical records or CPOE systems), but this application remains under consideration for the future. Organizations contemplating introduction or upgrade of such systems should strive to eliminate the use of dangerous abbreviations, acronyms, symbols, and dose designations from the software.

Official “Do Not Use” List

<table>
<thead>
<tr>
<th>Do Not Use</th>
<th>Potential Problem</th>
<th>Use Instead</th>
</tr>
</thead>
<tbody>
<tr>
<td>U, u (unit)</td>
<td>Mistaken for “0” (zero), the number “4” (four) or “cc”</td>
<td>Write “unit”</td>
</tr>
<tr>
<td>IU (International Unit)</td>
<td>Mistaken for IV (intravenous) or the number 10 (ten)</td>
<td>Write “International Unit”</td>
</tr>
<tr>
<td>Q.D., QD, q.d., qd (daily)</td>
<td>Mistaken for each other</td>
<td>Write “daily”</td>
</tr>
<tr>
<td>Q.O.D., QOD, q.o.d, qod (every other day)</td>
<td>Period after the Q mistaken for “I” and the “O” mistaken for “I”</td>
<td>Write “every other day”</td>
</tr>
<tr>
<td>Trailing zero (X.0 mg)*</td>
<td>Decimal point is missed</td>
<td>Write X mg</td>
</tr>
<tr>
<td>Lack of leading zero (X mg)</td>
<td></td>
<td>Write 0.X mg</td>
</tr>
<tr>
<td>MS</td>
<td>Can mean morphine sulfate or magnesium sulfate</td>
<td>Write “morphine sulfate” Write “magnesium sulfate”</td>
</tr>
<tr>
<td>MSO₄ and MgSO₄</td>
<td>Confused for one another</td>
<td></td>
</tr>
</tbody>
</table>

* Applies to all orders and all medication-related documentation that is handwritten (including free-text computer entry) or on pre-printed forms.

Exception: A “trailing zero” may be used only where required to demonstrate the level of precision of the value being reported, such as for laboratory results, imaging studies that report size of lesions, or catheter/tube sizes. It may not be used in medication orders or other medication-related documentation.
The National Summit on Medical Abbreviations

Participants at the November 2004 National Summit on Medical Abbreviations supported the “do not use” list. Summit conclusions were posted on the Joint Commission website for public comment. During the four-week comment period, the Joint Commission received 5,227 responses, including 15,485 comments. More than 80 percent of the respondents supported the creation and adoption of a “do not use” list. This special one-day Summit brought together representatives of more than 70 professional societies and associations and special interest groups to discuss medical errors related to the misuse and misinterpretation of abbreviations, acronyms, and symbols. The objective of the Summit was to reach consensus on the scope and implications of this serious and complex problem and to find reasonable solutions using all of the evidence at hand and in the most dispassionate way possible.

The National Summit on Medical Abbreviations was hosted by The Joint Commission with its co-conveners American College of Physicians, American College of Surgeons, American Dental Association, American Hospital Association, American Medical Association, American Society of Health-System Pharmacists, Institute for Safe Medication Practices, and United States Pharmacopeia. Approximately 50 professional societies and associations and selected interest groups participated in the Summit representing every perspective.

For more information

Contact the Standards Interpretation Group at (630) 792-5900, or complete the Standards Online Question Submission Form at http://www.jointcommission.org/Standards/OnlineQuestionForm/.
Appendix E

Bibliography

Books & Monographs on Item Writing and Test Development


Journal Articles About Item Writing and Test Development


The American Registry of Radiologic Technologists®

Promoting high standards of patient care by recognizing qualified individuals in diagnostic medical imaging, interventional procedures, and radiation therapy.

1255 Northland Drive
St. Paul, Minnesota 55120
Telephone 651.687.0048

Visit our web site at www.arrt.org