Vascular Sonography

The purpose of structured education is to provide the opportunity for individuals to develop mastery of discipline-specific knowledge that, when coupled with selected clinical experiences, helps to document qualifications. The Structured Education Requirements for Vascular Sonography is provided to assist candidates with these requirements.

Candidates for vascular sonography certification and registration must document at least 16 hours of structured education\(^1\). The activities must be earned within the 24-month period immediately prior to submission of an application for certification and registration. Structured education activities may be academic courses from an institution accredited by a mechanism recognized by the ARRT\(^2\), CE opportunities approved by a RCEEM or RCEEM+, or a combination of the two.

Structured education documentation must include at least one CE credit or its equivalent in each content category listed below (i.e., Patient Care, Safety, Image Production, and Procedures). The remaining hours may be earned from any one or more of the content areas. Specific topics within each category are addressed in the content outline, which makes up the remaining pages of this document.

Content Category

<table>
<thead>
<tr>
<th>Content Category</th>
<th>Minimum Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Care</td>
<td>1</td>
</tr>
<tr>
<td>Image Production</td>
<td>1</td>
</tr>
<tr>
<td>Procedures</td>
<td>1</td>
</tr>
</tbody>
</table>

Patient Care
- Patient Interactions and Management

Image Production
- Basic Principles of Ultrasound
- Image Formation
- Evaluation and Selection of Representative Images

Procedures
- Abdominal/Pelvic Vasculature
- Arterial Peripheral Vasculature
- Venous Peripheral Vasculature
- Extracranial Cerebral Vasculature and Other Sonographic Procedures

Total: 16

Acceptable Examples:

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient Care – 2 hours</td>
<td>Patient Care – 3 hours</td>
<td>Patient Care – 1 hour</td>
</tr>
<tr>
<td>Image Production – 6 hours</td>
<td>Image Production – 2 hours</td>
<td>Image Production – 10 hours</td>
</tr>
<tr>
<td>Procedures – 8 hours</td>
<td>Procedures – 11 hours</td>
<td>Procedures – 5 hours</td>
</tr>
<tr>
<td>TOTAL – 16 hours</td>
<td>TOTAL – 16 hours</td>
<td>TOTAL – 16 hours</td>
</tr>
</tbody>
</table>

\(^1\) If there is a structured education requirement document with a newer effective date, you may either use the new document or continue to use this document if you have completed at least one educational activity prior to the effective date of the new version. For more information access the online clinical experience tool, where structured education is also reported.

\(^2\) Activities meeting the definition of an approved academic course will be awarded credit at the rate of 12 CE credits for each academic quarter credit or 16 CE credits for each academic semester credit. See the ARRT Continuing Education Requirements document for additional information.
Patient Care

1. Patient Interactions and Management
 A. Ethical and Legal Aspects
 1. patient’s rights
 a. informed consent
 (*e.g., written, oral, implied)
 b. confidentiality (HIPAA)
 c. American Hospital Association
 (AHA) Patient Care Partnership
 (Patients’ Bill of Rights)
 1. privacy
 2. extent of care (e.g., DNR)
 3. access to information
 4. living will, health care proxy,
 advance directive
 5. research participation
 2. legal issues
 a. verification (e.g., patient
 identification, compare order to
 clinical indication, exam coding)
 b. common terminology (e.g., battery,
 negligence, malpractice, beneficence)
 c. legal doctrines (e.g., respondeat
 superior, res ipsa loquitur)
 d. restraints versus immobilization
 3. ARRT Standards of Ethics
 B. Interpersonal Communication
 1. modes of communication
 a. verbal/written
 b. nonverbal (e.g., eye contact, touching)
 2. challenges in communication
 a. interactions with others
 1. language barriers
 2. cultural and social factors
 3. physical and sensory
 impairments
 4. age
 5. emotional status, acceptance of
 condition
 b. explanation of medical terms
 c. strategies to improve
 understanding
 3. patient education
 a. explanation of current procedure
 (e.g., risks, benefits)
 b. pre- and post-examination
 instructions (e.g., preparations,
 diet, medications, discharge
 instructions)
 c. respond to inquiries about other
 imaging modalities (e.g., CT, MRI,
 mammography, radiography, bone
 densitometry)
 C. Physical Assistance and Monitoring
 1. patient transfer and movement
 a. body mechanics (e.g., balance,
 alignment, movement)
 b. patient transfer techniques
 2. assisting patients with medical
 equipment
 a. infusion catheters and pumps
 b. oxygen delivery systems
 c. other (e.g., nasogastric tubes,
 urinary catheters)
 3. routine monitoring
 a. vital signs
 b. physical signs and symptoms
 (e.g., motor control, severity of
 injury)
 c. fall prevention
 d. documentation
 4. operator ergonomics
 D. Medical Emergencies
 1. allergic reactions
 (e.g., contrast, latex)
 2. cardiac/respiratory arrest
 (e.g., CPR)
 3. physical injury or trauma
 4. other medical disorders (e.g.,
 seizures, diabetic reactions)

* The abbreviation “e.g.” is used to indicate that examples
 are listed in parenthesis, but that it is not a complete list of
 all possibilities.

(Patient Care continues on the following page)
Patient Care (continued)

E. Infection Control
 1. chain of infection (cycle of infection)
 a. pathogen
 b. reservoir
 c. portal of exit
 d. mode of transmission
 1. direct
 a. droplet
 b. direct contact
 2. indirect
 a. airborne
 b. vehicle-borne (fomite)
 c. vector-borne (mechanical or biological)
 e. portal of entry
 f. susceptible host
 2. asepsis
 a. equipment disinfection
 b. equipment sterilization
 c. medical aseptic technique
 d. sterile technique
 e. proper gel handling
 3. CDC Standard Precautions
 a. hand hygiene
 b. use of personal protective equipment (e.g., gloves, gowns, masks)
 c. safe handling of contaminated equipment/surfaces
 d. disposal of contaminated materials
 1. linens
 2. needles
 3. patient supplies
 4. blood and body fluids
 4. transmission-based precautions
 a. contact
 b. droplet
 c. airborne
 5. additional precautions
 a. neutropenic precautions (reverse isolation)
 b. healthcare associated (nosocomial) infections

F. Patient Monitoring and Safety
 1. ultrasound bioeffects and safety
 2. pressure and intensity measurement
 a. thermal index (e.g., soft tissue, bone)
 b. mechanical index
 3. research on biological effects
 4. AIUM recommendations

G. Interventional Procedures
 1. patient preparation
 2. time-out
 3. informed consent
 4. sterile technique
 5. follow-up instructions
Image Production

1. Basic Principles of Ultrasound
 A. Generation of Signal
 1. transducers
 a. construction and properties
 1. crystal thickness, wavelength
 2. frequency spectrum, resonance
 3. damping
 b. operation
 1. focusing
 2. beam diameter
 3. piezoelectric effect
 c. types
 2. beam configuration
 a. near and far field
 b. focal zone
 c. beam profile
 3. pulse characteristics
 a. pulse repetition frequency
 b. pulse repetition period
 c. spatial pulse length
 d. duty factor
 e. frequency
 f. resolution
 1. axial
 2. lateral
 3. temporal
 4. elevational
 5. contrast
 4. technical factors
 a. frequency, bandwidth, Q factor
 b. power
 c. pressure
 d. intensity
 e. amplitude
 5. modes
 a. B-mode
 b. Doppler
 1. color
 2. spectral
 a. pulse wave Doppler
 b. continuous wave Doppler
 3. power/energy
 B. Machine and Transducer Use
 1. selection
 2. care
 3. malfunctions
 C. ABI/Pulse Volume Recording Equipment
 1. cuff selection
 2. treadmill

(Image Production continues on the following page)
2. Image Formation
 A. Technical Factors for Diagnostic Quality Images
 1. power
 2. focal zone
 3. depth
 4. compensation/TGC
 5. gain
 6. frame rate
 7. Doppler gain
 8. Doppler angle
 9. gate (sample volume) size/placement
 10. wall filter
 11. scale
 12. color box (size and steering)
 13. dynamic range
 14. line density
 15. spectral baseline
 16. harmonics
 17. spatial compounding
 B. Beam Interactions
 1. speed of sound in soft tissue
 a. density
 b. stiffness
 2. time and distance (range equation)
 3. acoustic impedance
 4. normal and oblique incidence
 5. reflection
 6. transmitted/refracted waves
 7. intensity
 8. scattering
 9. absorption and attenuation
 C. Detection and Display of Echoes
 1. receiver
 2. amplitude
 3. dynamic range and compression
 4. analog-to-digital converter (ADC)
 5. digital-to-analog converter (DAC)
 6. brightness
 7. contrast
 8. post-processing (e.g., smoothing, edge enhancement, filtering, read magnification)
 9. panoramic imaging
 D. Bioeffects
 1. thermal
 2. mechanical (e.g., cavitation)
 3. output measures (e.g., MI, TIS, TIC, TIB, SPTA)
 4. ALARA
 E. Measurements from Spectral Analysis
 1. peak systolic velocity (PSV)
 2. end diastolic velocity (EDV)
 3. resistive index (RI)/pulsatility index (PI)
 4. measure of systolic acceleration
 a. acceleration time (AT)
 b. acceleration index (AI)
 c. tardus parvus waveform
 5. volume flow (e.g., hemodialysis fistulas)

(Image Production continues on the following page)
Image Production (continued)

3. Evaluation and Selection of Representative Images

A. Criteria for Diagnostic Quality
 1. proper demonstration of anatomical structures
 2. proper demonstration of pathological conditions
 3. artifacts
 a. gray scale (e.g., reverberation, mirror image, shadowing, posterior enhancement, comet tail)
 b. Doppler (e.g., aliasing, twinkling, mirror image)
 4. improvement of suboptimal images

B. Image Archiving

C. Color and Spectral Analysis
 1. direction of flow
 2. presence or absence of flow
 3. differentiation of normal and abnormal spectral waveforms

D. Arterial and Venous Hemodynamics
 1. flow patterns (e.g., turbulence, phasicity)
 2. pressure
 3. velocity
 4. peripheral vascular resistance
 5. wall compliance
Procedures

TYPE OF EXAM

1. Abdominal/Pelvic Vasculature
 A. Arterial
 1. aorta
 2. celiac
 3. hepatic
 4. splenic
 5. superior mesenteric/inferior mesenteric
 6. renal
 7. common iliac
 8. internal iliac
 9. external iliac
 B. Venous
 1. inferior vena cava
 2. hepatic
 3. portal
 4. splenic
 5. superior mesenteric
 6. renal
 7. pelvic varices
 8. common iliac
 9. internal iliac
 10. external iliac
 C. Transplant
 1. liver
 2. kidney(s)

FOCUS OF QUESTIONS

Practice Parameters (e.g., AIUM, ACR, IAC)
- clinical indications
- patient preparation
- patient positioning
- instrumentation (e.g., transducer, stand-off pads)
- technical factors
- evaluation and documentation of visualized anatomy
- optimizing image quality
- image annotation

Anatomy and Physiology
- normal
- normal variant
- abnormal
- measurements

Abnormalities
- pathology
- congenital anomalies
- lab values
- differential diagnosis

Doppler Applications/Blood Flow Characteristics
- normal
- normal variant
- abnormal
- measurements

(Procedures continues on the following page.)
Procedures (continued)

TYPE OF EXAM

2. Arterial Peripheral Vasculature
 A. Upper Extremity
 1. brachiocephalic
 2. subclavian
 3. axillary
 4. brachial
 5. radial
 6. ulnar
 7. palmar arch (including Allen test)
 B. Lower Extremity
 1. external iliac
 2. common femoral
 3. superficial femoral
 4. deep femoral
 5. popliteal
 6. tibioperoneal trunk
 7. posterior tibial
 8. anterior tibial
 9. peroneal
 10. dorsalis pedis
 C. Stress/Pressure Testing
 1. PVR (pulse volume recording)
 2. segmental pressures (upper extremities)
 3. segmental pressures (lower extremities)
 4. ABI (ankle brachial index)
 5. post-exercise testing
 6. photoplethysmography (PPG)
 7. toe-brachial index (TBI)

FOCUS OF QUESTIONS

Practice Parameters (e.g., AIUM, ACR, IAC)
 • clinical indications
 • patient preparation
 • patient positioning
 • instrumentation (e.g., transducer, stand-off pads)
 • technical factors
 • evaluation and documentation of visualized anatomy
 • optimizing image quality
 • image annotation

Anatomy and Physiology
 • normal
 • normal variant
 • abnormal
 • measurements

Abnormalities
 • pathology
 • congenital anomalies
 • lab values
 • differential diagnosis

Doppler Applications/Blood Flow Characteristics
 • normal
 • normal variant
 • abnormal
 • measurements

(Procedures continues on the following page.)
Procedures (continued)

TYPE OF EXAM

3. Venous Peripheral Vasculature
 A. Upper Extremity Venous
 1. internal jugular
 2. brachiocephalic
 3. subclavian
 4. axillary
 5. brachial
 6. cephalic
 7. basilic
 8. radial
 9. ulnar
 B. Lower Extremity Venous
 1. external iliac
 2. common femoral
 3. femoral
 4. deep femoral
 5. popliteal
 6. great saphenous
 7. small saphenous
 8. calf veins
 C. Venous Testing
 1. vein mapping (upper and lower)
 2. reflux assessment (e.g., venous insufficiency, perforators, varicose veins, valve competency)

FOCUS OF QUESTIONS

Practice Parameters (e.g., AIUM, ACR, IAC)
- clinical indications
- patient preparation
- patient positioning
- instrumentation (e.g., transducer, stand-off pads)
- technical factors
- evaluation and documentation of visualized anatomy
- optimizing image quality
- image annotation

Anatomy and Physiology
- normal
- normal variant
- abnormal
- measurements

Abnormalities
- pathology
- congenital anomalies
- lab values
- differential diagnosis

Doppler Applications/Blood Flow Characteristics
- normal
- normal variant
- abnormal
- measurements

(Procedures continues on the following page.)
Procedures (continued)

TYPE OF EXAM

4. Extracranial Cerebral Vasculature and Other Sonographic Procedures
 A. Carotid Artery (CCA, ICA, ECA)
 B. Vertebral Artery
 C. Other Sonographic Procedures
 1. bypass grafts
 2. endografts
 3. dialysis access grafts/fistulae
 4. stents
 5. post catheterization complications
 6. IVC filters
 7. TIPS
 8. line position (e.g., PICC)
 9. post endarterectomy
 10. vein ablations
 11. pseudoaneurysm treatment
 (compression or guided thrombin injection)

FOCUS OF QUESTIONS

Practice Parameters (e.g., AIUM, ACR, IAC)
 • clinical indications
 • patient preparation
 • patient positioning
 • instrumentation (e.g., transducer, stand-off pads)
 • technical factors
 • evaluation and documentation of visualized anatomy
 • optimizing image quality
 • image annotation

Anatomy and Physiology
 • normal
 • normal variant
 • abnormal
 • measurements

Abnormalities
 • pathology
 • congenital anomalies
 • lab values
 • differential diagnosis

Doppler Applications/Blood Flow Characteristics
 • normal
 • normal variant
 • abnormal
 • measurements